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Foreword

The discovery of superconductivity is over 100 years old. While superconducting ma-
terials have been studied in much detail over the past 100 years, it remains a grand
intellectual challenge to understand how metals completely loose electric resistivity at
low temperatures, and it remains an open question whether room temperature super-
conductivity can be achieved. Superconductivity based technologies are gradually being
commercialized, in powerful magnetic �eld generators, SQUID magnetometers, Josephson
junction ampli�ers, microwave �lters, and superconducting qubits. The development of
these practical technologies would also bene�t from understanding the real physics of su-
perconductivity. Inspired by these challenges, we believe it is time to properly understand
how superconductivity really works.

The vast collection of superconductivity related measurement data, accumulated over
the past 100 years, reveals quantitative formulas that characterize superconductivity. The
most important such formulas are the London equation, the London moment formula, the
Josephson frequency formula, the Uemura scaling, and the Roeser�Huber formula. A cor-
rect theory of superconductivity must rigorously derive all of these formulas - without
involving ad-hoc assumptions or �tting parameters. While the currently favored theory
of superconductivity assumes the existence of free-�owing electron pairs whose kinetic
energy is near the Fermi energy level, the essential superconductivity phenomena are in
fact incompatible with such free-�owing electron pairs. If the Meissner e�ect was caused
by electron pairs freely circulating around the perimeter, these radially accelerating elec-
trons would loose energy by emitting radiation; in contrast, the London equation formula
is static. If the magnetic �eld of rotating superconductors was induced by freely circulating
electron pairs, the London moment formula would depend on number of involved electron
pairs; in contrast, the London moment formula contains neither the number or density
of superconducting electrons. If the Josephson radiation was caused by such freely oscil-
lating electron pairs, the derivation of Josephson frequency formula would not be based
on electrons having close to zero kinetic energy. If such free-�owing electron pairs were
involved in high-temperature superconductivity, the currently favored models would have
predicted the experimentally observed Uemura scaling of superconducting temperature.
These paradoxes demonstrate that the currently favored BCS theory of superconductiv-
ity is fundamentally wrong, and thus shall never be able to predict higher temperature
superconductors. Not surprisingly, the BCS theory failed to predict any improved super-
conductor for 60 years already; cuprates, MgB2, or iron-based superconductors were all
discovered by trial and error.

In this book, we develop the theory of electrons' Bose-Einstein condensation. The
key is to correctly calculate both the microscopic interaction and the macroscopic ther-
modynamics of Bose-Einstein condensed electrons. Recognizing that only a fraction of
electrons condenses at the transition point, a realistic calculation of Bose-Einstein conden-
sation temperature requires evaluating the thermodynamic balance between coherent and
incoherent electron populations. All results are derived through mathematically rigorous
calculations that are explained step by step.
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After clarifying the dynamics of Bose-Einstein condensed electrons from �rst prin-
ciples, the essential formulas of superconducting materials emerge naturally: this book
contains rigorous derivations of the London equation, the London moment formula, the
Josephson frequency formula, the Uemura scaling, and the Roeser�Huber formula. For
most of these formulas, our book contains their �rst mathematically and physically correct
derivation. We also review a large number of experiments that show direct signatures of
Bose-Einstein condensation, including the well-known coherence of superconducting elec-
trons.

Regarding the mystery of superconductors' perfect conductivity: superconducting
electrons must have the ability to pass through the lattice without any scattering. This is
naturally achieved by the main feature of Bose-Einstein condensed electrons: adding and
removing the lowest-energy conduction band electrons whose wavefunction has macro-
scopically large wavelength - such a large wavelength no longer scatters on defect sites or
lattice distortions because of the many orders of magnitude mismatch with respect to the
inter-nuclear distance. Regarding the mystery of superconductors' perfect diamagnetism:
we show that Meissner �ows are generated by coherent electron oscillations that become
energetically favored over the non-oscillating state - similarly to the operating principle
of free electron lasers.

While Bose-Einstein condensed electron states generally arise in the conduction band,
nothing in the theory is speci�c to just that electron population. This leads to the
question: can ordinary electron orbitals host Bose-Einstein condensed electrons? The last
chapter presents experimental investigations of this question, with surprising answers.

At the end of this short journey, the reader is rewarded by understanding how super-
conductivity really works, and learns about unexpected new materials comprising Bose-
Einstein condensed electron orbitals.

Definition. Ametal is de�ned as a material comprising �conduction band� electrons
that are not bound to any speci�c nucleus. A conduction band comprises anti-bonding
orbitals, and the relative energy levels of such orbitals determine whether any electrons
occupy them. Since conduction band electrons are not bound to any individual nucleus,
they are bound by the positive charge arising on the surface of metallic materials. There-
fore the energy eigenstates of conduction band electrons are the standing wave solutions
to the square potential-well problem. Metals conduct electricity through their ability to
add and remove conduction band electrons at the lowest unoccupied wavelength of such
standing wave solutions. These lowest energy unoccupied standing waves have comparable
wavelength to the inter-nuclear distance. Electric resistivity arises at the crystal defect
sites, as a consequence of a scattering process: the wavefunction of a current-carrying
electron scatters on a defect site. The presence of crystal defects is unavoidable in any
macroscopic material.

A superconductor is a sub-class of metals, de�ned by its ability to conduct electric
current without any measurable resistance. Electric resistivity is caused by scattering
on crystal defect sites, lattice vibrations, electron-electron scattering, etc. Superconduct-
ing electrons must have the ability to pass through the superconducting material with-
out any such microscopic-scale impact. The simplest way to achieve this is to add and
remove those conduction band electrons whose wavefunction has macroscopically large
wavelength. Such a large wavelength no longer scatters on defect sites or lattice distor-
tions because of the many orders of magnitude mismatch with respect to the inter-nuclear
distance. The principle of Occam's razor dictates that superconductivity theory should
focus on models that imply variable occupancy level of the lowest wavelength standing
waves. We adhere to this principle in our work.



CHAPTER 1

Spin correlations and electron coherence

Giorgio Vassallo[1,2], Paul O'Hara[3], and Andras Kovacs[4]
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1.1. A brief history of electron statistics rules

Until the dawn of quantum mechanics, there was little overlap between physics and
chemistry. This situation changed dramatically with the introduction of quantum me-
chanics: the accurate calculation of electron binding energies has become quantum me-
chanics' main success, thus being able to clarify why �uorine takes an electron from
lithium, and not vice versa. This capability of binding energy calculations has eventually
established quantum mechanics as a practical tool for the predictive modeling of chemical
reactions.

However, the calculation of electron binding energies explains only half of chemistry;
the remaining challenge 100 years ago was to explain the phenomenological observation
that only two electrons can occupy any given atomic or molecular orbital. This electron
occupancy limiting rule has become known as the exclusion principle. Those quantum
mechanical systems where the exclusion principle applies are said to obey Fermi-Dirac
statistics, while quantum mechanical systems without the exclusion principle are said to
obey Bose-Einstein statistics.

The initial formulation of electron statistics rules, dating back to the �rst half of
20th century, postulated that i) individual electrons cannot occupy the same quantum
mechanical state, and ii) electron pairs cannot occupy the same quantum mechanical
state. The second postulate refers to the observation that bound electron pairs occupy
distinct orbitals, i.e. they generally do not collapse down into the lowest-energy K-shell.

This set of electron statistics postulates was reformulated in the mid-20th century by
superconductivity researchers, postulating that i) individual electrons cannot occupy the
same quantum mechanical state, ii) hypothetical phonon-bound electron pairs can occupy
the same quantum mechanical state, and iii) other electron pairs cannot occupy the same
quantum mechanical state, thus maintaining the Fermi-sea of conduction band electrons
and the distinct inner-shell electron pairs.

After the discovery of high-temperature superconductivity in the late 20th century,
where phonons play no role, the set of electron statistics postulates was again reformu-
lated, postulating that i) individual electrons cannot occupy the same quantum mechan-
ical state, ii) hypothetical phonon-bound electron pairs can occupy the same quantum
mechanical state, iii) the hypothetical weakly bound electron pairs of high-temperature
superconductors can occupy the same quantum mechanical state [1], and iv) other electron
pairs cannot occupy the same quantum mechanical state.

The recently discovered �spin-triplet superconductivity� represents an other major
extension of electron statistics postulates; it allows two individual electrons to occupy
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the same quantum mechanical state as well [2]. The study of various conduction band
electron topologies also led to an extension of electron statistics postulates for the case
of 2-dimensional electron systems; the scienti�c literature refers to this new postulate as
the �anyon� con�guration of electrons [3].

The above-outlined historic trend of continuously extending electron statistics postu-
lates demonstrates that this topic has not been well understood in the �rst place, thus ne-
cessitating additional postulates to accommodate each new experimental discovery. This
brings into question what really determines whether electron interactions are fermionic or
bosonic. In this chapter, we explore a new understanding of electron statistics, and lay
the foundations for understanding electrons' Bose-Einstein condensation.

1.2. Coherent versus incoherent electron states

Let us introduce the following classi�cation of electron states:

• N electrons are said to be in coherent state if all quantum numbers of each
electron are the same: i.e. they are all in the same quantum mechanical state.

• N electrons are said to be in incoherent state if each electron is in a di�erent
quantum mechanical state.

In a hypothetical coherent state, each involved electron is an indistinguishable part of
exactly the same quantum mechanical wave. The N electrons occupying a coherent state
comprise a single wavefunction: ψ =

√
neiφ |s⟩, where φ is the quantum mechanical phase

of the common wavefunction, n ≡ N
V

is its electron density, and |s⟩ is its spin state.
In such a coherent state, individual electron properties may be measured only by such
methods that resolve much shorter distances than the quantum mechanical wavelength:
for example the Compton scattering of radiation with femtometer-scale wavelength still
happens from individual electrons. But any lower resolution measurement on coherent
electrons is a simultaneous measurement on all involved electrons. I.e. a spin state
measurement yields |+⟩ or |−⟩ state of the common wavefunction. It is not possible to
measure an individual electron's spin state without breaking up the coherent state.

In an incoherent state, each involved electron comprises a di�erent quantum mechan-
ical wave. Principally, it is possible to measure the individual properties of each inco-
herent electron. I.e. the|+⟩ or |−⟩ spin state of individual electrons can be determined
by spin state measurements. In the case of interacting electrons, their measured spin
values become statistically correlated. Such statistical correlation is referred to as the
spin-correlation between incoherent electrons' spin values. The spin-correlation is said to
be isotropic is its statistics does not depend on the spatial direction of spin measurement.

In the following, we shall explore the applicable electron statistics for the above-de�ned
incoherent versus coherent state classes.

1.3. Spin correlations between particles occupying di�erent orbitals

Isotropic spin-correlation (ISC) is observed not only for electrons sharing the same
orbital, but also for electrons in di�erent orbitals. For example, the ground state oxygen
molecule is the so-called �triplet oxygen�: it has two electrons occupying two distinct π∗

orbitals (anti-bonding orbital), and these two electrons are isotropically spin-correlated
into parallel direction.

Isotropic spin-correlation is observed also between the nuclei comprising a molecule.
For example, the hydrogen molecule has two nuclear spin isomers: the two protons of
�ortho-hydrogen� are isotropically spin-correlated into parallel direction, while the two
protons of �para-hydrogen� are isotropically spin-correlated into opposite direction. This
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system is signi�cant because the two nuclei are well separated in space; the individual
spin state of each proton is thus principally measurable.

Isotropic spin-correlation is observed between a bound electron and a nucleus: such
interaction generates the hyper�ne split of the electron's binding energy. Isotropic spin-
correlation is also observed between a delocalized unpaired electron and a nucleus: such
an electron-nucleus spin interaction shows up in NMR measurements, contributing to the
Knight shift of metals.

There is a simple reason for ISC particle states being ubiquitous: each quantum me-
chanical state is characterized by a well-de�ned energy level. This well-de�ned energy
level condition requires isotropic spin-correlation among the particles occupying a given
state; otherwise the spin interaction energy would depend on the spin measurement di-
rection, and there would not be a well-de�ned energy level. The universal presence of
ISC electron states thus follows from the well-de�ned energy condition, and the challenge
is to understand what limits the number of ISC electrons occupying a given quantum
mechanical state.

In all observations, ISC always occurs pair-wise: i.e. the ISC of N>2 particles
is never observed. Table 1 illustrates this e�ect for the simplest atoms: an electron
is either spin-correlated to an other electron or to a nucleus, but never to both at the
same time. Whether we look at particles sharing the same orbital or particles occupying
di�erent orbitals, we thus observe exactly the same phenomenology of strictly pair-wise
ISC coupling. This suggests the same origin of the ISC coupling limit, and we therefore
look for a unifying principle. Taking the example of hydrogen spin isomers, it is obvious
that Pauli's microcausality arguments do not apply to well-separated nuclei, and it is also
obvious that there would be nothing anti-symmetric about the exchange of two separated
nuclei.

Table 1. The pattern of spin correlations between electrons and the nucleus

p+ + e−

(H)
p+ + 2e−

(H-)

3He2+ + e−

(He+)

3He2+ + 2e−

(He)

Hyper�ne
split

yes no yes no

ISC electrons - yes - yes

We approach the challenge of �nding a unifying principle by �rstly considering what
spin measurement really means. It is well-known by the operators of electron spin reso-
nance (ESR) and nuclear magnetic resonance (NMR) equipment that the particle whose
spin they measure is in a Larmor spin-precession. Speci�cally, the magnetic moment vec-
tor generated by the particle's spin is Larmor precessing around the externally applied
magnetic �eld lines. The torque is this Larmor precession is given by:

(1.3.1) τ = |gµB ×B|

where B is the applied magnetic �eld strength, µB is the Bohr magneton, and g ≈ 1+ α
2π

is the gyromagnetic ratio of the electron spin.
This Larmor spin-precession's angular frequency calculation can be found in reference

[10], and it evaluates to:

ωL =
gµB
ℏ
B
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We note that the Larmor spin-precession's frequency is exactly half of the �electron spin
resonance� frequency [6]: ωesr = 2ωL. The ωesr value is the experimentally measurable an-
gular frequency of resonant �ipping between the parallel and anti-parallel spin precession
orientations with respect to a sinusoidally varying applied magnetic �eld. A consequence
of Larmor spin-precession phenomenon: the measured ℏ

2
spin angular moment, measured

via an applied B �eld, is only that component of the total angular momentum vector
which is pointing along the applied B �eld.

Figure 1.3.1. An illustration of two protons' Larmor spin-precession in a
hydrogen molecule. Each proton perceives the other proton's magnetic �eld
(directed red curves) as an externally applied magnetic �eld, and Larmor
spin-precesses (cones with arrow) around the external magnetic �eld line.

Is there a principal di�erence between the magnetic �eld applied by an external ap-
paratus and the magnetic �eld applied by an external particle? Taking the example of a
hydrogen molecule, the magnetic �eld applied onto the proton by an other particle 74 pm
away is principally not di�erent from the magnetic �eld applied by an external apparatus.
Taking the example of Knight shift measurements, the magnetic �eld applied onto the
proton by a macroscopically delocalized electron wave is principally not di�erent from the
magnetic �eld applied by an external apparatus. It is clear from these examples that the
magnetic �eld of one particle induces a Larmor spin-precession of the other particle; i.e.
each particle of the involved ISC pair undergoes Larmor spin-precession. This concept is
illustrated in �gure 1.3.1 for a hydrogen molecule's two protons: the two proton spins are
aligned on the average, while their actual magnetic moment is in a precession. One may
observe in �gure 1.3.1 an interesting coupling dynamics for the x component of the spin,
when the x axis connects the two protons. Taking the magnetic moment vector of the left
proton to point along towards the right proton, the right proton perceives a magnetic �eld



1.4. ISOTROPIC SPIN-COUPLING LIMIT FOR INCOHERENT ELECTRON STATES 10

pointing along the x axis, and its magnetic moment vector will thus be in a precession
around the x axis. In turn, the left proton perceives a magnetic �eld coming at an angle
with respect to the x axis, causing a tilted precession cone that rotates in sync around
the x axis while the actual magnetic moment vector remains aligned with the x axis. In
essence, the entire magnetic �eld con�guration depicted in �gure 1.3.1 is rotating around
the x axis. A similar coupling dynamics can be worked out for the y and z spin directions.

For the purpose of our analysis, we do not need to know details of spin precession dy-
namics because in the following we shall work with the time-averaged spin measurements
of an ISC pair.

We established through the above examples that the isotropic spin-correlation of sep-
arated particles involves Larmor spin-precession. At the same time, each involved particle
has a principally measurable spin state, and thus we can investigate the origin of strictly
N=2 coupling by taking into account the fact of individually measurable spin state.

1.4. Isotropic spin-coupling limit for incoherent electron states

Considering the phenomenological pair-wise ISC coupling limit, regardless of the in-
volved particles being on the same orbital or not, the question arises whether the two
electrons sharing the same orbital might also be in Larmor spin-precession with respect
to the magnetic �eld generated by the other particle's spin. In the case of an antibonding
molecular orbital, its two electrons have a large spatial separation distance because their
wavefunction overlap region is mostly empty; therefore these separated electrons again
perceive the magnetic �eld of the other electron as an external �eld. In turn, this implies
Larmor precession and individually measurable spin state for two ISC electrons occupying
an antibonding molecular orbital.

Let us �nally consider an incoherent electron pair sharing the same bonding orbital;
their wavefunctions overlap, and Zeeman split measurements yield the zero sum of the
two oppositely oriented spins. Nevertheless, it may be possible to individually measure
each electron's spin state by �rstly separating them in such a way that does not disrupt
their spin state, and then measuring each electron's spin state. The principal feasibility of
such individual electron spin state measurement is demonstrated by reference [7], whose
authors studied the molecular photo-dissociation of H2 and D2 under linearly polarized
incident light, employing 33.66 eV photon energy. They measured the angular correlation
function of electromagnetic Lyman-alpha radiation produced by the resulting atom pair
in order to �nd out whether the atom pair is entangled or not. The authors of [7] conclude
that an entangled electron pair is produced through the photo-dissociation of a hydrogen
molecule, and this entanglement originates from their molecular state. The results of
[7] thus demonstrate that it is principally possible to photo-dissociate a bonding orbital
occupying electron pair, without breaking their entanglement, and then measure their
individual spin state.

Up to now, we established that electrons occupying incoherent states can be always
treated as electrons with individually measurable spin state. In the following, we consider
the implications of individual spin measurability, based on the methodology of reference
[4]. By de�nition, N electrons are said to be isotropically spin-correlated (ISC), if a
measurement made in an arbitrary direction on one of the particles allows us to predict
with certainty the spin value of each of the other N − 1 particles for the same direction.

Theorem 1. Incoherent ISC states exist only for N = 2.

Essentially, to show that ISC states exist only for N = 2, it is su�cient to prove that
it is impossible to have three such particles. The impossibility of three ISC particles also
excludes the possibility of N ≥ 3 ISC particles.
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Suppose that an ISC state exists for N = 3. We demonstrate in the following para-
graphs that this assumption leads to a mathematical contradiction.

In the interest of clarity, assume without loss of generality that the three ISC particles
are such that they are detected to be in (+,+,+) correlation for an arbitrary measurement
direction. Later we will generalize the proof to any other correlation type. De�ne the x
axis along this arbitrary direction, and de�ne the z axis in any orthogonal direction to
x. We will perform further spin measurements in the x − z plane. Spin measurements
in orthogonal directions are statistically independent. Although we know a given particle
spin to be |+⟩ along the x axis, a subsequent spin measurement along the z axis of the
apparatus gives 1

2
probability of measuring |−⟩ state. In general, a spin state in direction

2θ with respect to the x axis, given that it is in the state |+⟩ with respect to the x
axis, can be constructed from the rotation R and is given by R |+⟩ = cos θ |+⟩− sin θ |−⟩.
Therefore, in direction 2θ the probability of measuring |+⟩ state is cos2 θ and of measuring
|−⟩ is sin2 θ. Taking the (x, 2θ) direction with respect to two spin correlated particles, the
joint probabilities are P (+,+) = 1

2
cos2 θ and P (+,−) = 1

2
sin2 θ. Similarly, for the ket

|−⟩, R |−⟩ = sin θ |+⟩ + cos θ |−⟩ and the joint probabilities are P (−,−) = 1
2
cos2 θ and

P (−,+) = 1
2
sin2 θ. In principle, if three ISC particles exist, a sequence of spin correlated

measurements in the directions 2θ1, 2θ2, 2θ3 can be performed on the three entangled
particles. Let (s1(θ1), s2(θ2), s3(θ3)) represent each particle's observed spin values in the
three di�erent directions. Recall that the above stated spin correlation implies that if any
particle is measured to be in the si(θi) = |+⟩ spin state, the probability of measuring an
other particle in the sj(θj) = |−⟩ spin state becomes 1

2
sin2 (θj − θi).

Given that sn(θn) = |±⟩ for each n, there exists only two possible values for each
measurement, which we associate with �spin-up� and �spin-down� respectively. Hence, for
three measurements there are a total of 8 possibilities. In particular,

{(+,+,−), (+,−,−)} ⊂ {(+,+,−), (+,−,−), (−,+,−), (+,−,+)}
implies the following probability relationship:

P{(+,+,−), (+,−,−)} ≤ P{(+,+,−), (+,−,−), (−,+,−), (+,−,+)}
Consider the meaning of various subsets in the above inequality:

• The {(+,+,−), (+,−,−)} subset is interpreted as follows: we measured the spin
of particle 1 to be in |+⟩ state and particle 3 to be in |−⟩ state. The corresponding
probability is 1

2
sin2 (θ3 − θ1).

• The {(+,+,−), (−,+,−)} subset is interpreted as follows: we measured the spin
of particle 2 to be in |+⟩ state and particle 3 to be in |−⟩ state. The corresponding
probability is 1

2
sin2 (θ3 − θ2).

• The {(+,−,−), (+,−,+)} subset is interpreted as follows: we measured the spin
of particle 1 to be in |+⟩ state and particle 2 to be in |−⟩ state. The corresponding
probability is 1

2
sin2 (θ2 − θ1).

Substituting the above terms into the above inequality, we arrive at

1

2
sin2 (θ3 − θ1) ≤

1

2
sin2 (θ3 − θ2) +

1

2
sin2 (θ2 − θ1)

Taking θ3 − θ2 = θ2 − θ1 = π
6
and θ3 − θ1 = π

3
, the above inequality gives 1

2
≥ 3

4
, which

is a contradiction. Therefore, three particles cannot all be in the same spin state with
probability 1.

We note that the speci�c value of electron spin plays no role in the proof of

theorem 1, which indicates the irrelevance of Pauli's spin value based classi�-

cation.
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The real reason behind the exclusion principle is the isotropic spin correlation require-
ment of eigenstate-occupying electrons, along with the impossibility of more than two
such electrons in the case of individually measurable spins.

Remark: The proof of the above theorem was worked out for (+,+,+) or (−,−,−)
type spin correlation. To generalize the proof, suppose that the ISC particles are measured
to be (+,−,+) along an arbitrary measurement direction. Then the spin outcomes in the
three di�erent directions θ1, θ2, θ3 can be written as:

{(+,−,−), (+,+,−)} ⊂ {(+,−,−), (+,+,−), (−,−,−), (+,+,+)}
Essentially, this means that we �ipped the |+⟩ to |−⟩ to represent the state of par-

ticle number two. Applying the same probability argument as before, but noting that
P{(+,−,−), (−,−,−)} = 1

2
cos2 (θ3 − θ2), the inequality becomes

1

2
sin2 (θ3 − θ1) ≤

1

2
cos2 (θ3 − θ2) +

1

2
cos2 (θ2 − θ1)

Then upon taking θ3− θ2 = θ2− θ1 =
π
2
− π

6
and θ3− θ1 = π− π

3
gives as before 1

2
≥ 3

4
,

which is a contradiction.

1.5. The isotropy of anti-parallel and parallel spin correlations

We already mentioned the two known types of isotropic spin-correlations: the anti-
parallel correlated �spin singlet� state and the parallel correlated �spin triplet� state.
The above discussed coupling limit theorem applies to both types. Here, we show that
both parallel and anti-parallel correlations are isotropic. Understanding parallel spin
correlations is the key to understanding electrons' coherent state establishment, which
proceeds from this correlation type.

Usually, we identify a spin state measurement outcome by the following notation:

|+⟩ =
(

1
0

)
and |−⟩ =

(
0
1

)
But what do we really mean by �spin up� and �spin down�? Consider the z-axis spin
angular momentum operator Sz de�ned by

Sz |+⟩z =
1

2
|+⟩z and Sz |−⟩z = −1

2
|−⟩z .

where the 1
2
factor is the spin eigenvalue. More explicitly, we can write this spin operator

in a matrix form:

Sz |+⟩z =
(

1
2

0
0 −1

2

)(
1
0

)
=

1

2

(
1
0

)
and Sz |−⟩z =

(
1
2

0
0 −1

2

)(
0
1

)
= −1

2

(
0
1

)
and consequently

(1.5.1) Sz |+⟩z =
(

1
2

0
0 −1

2

)(
1
0

)
=

(
−1

2
0

0 1
2

)(
−1
0

)
=

1

2

(
1
0

)
= −1

2

(
−1
0

)
From this perspective, the Sz versus −Sz operators represent spin measurements along

the z and −z directions, and the associated unit eigenvectors are

(
1
0

)
versus

(
−1
0

)
.

Using analogous formalism, we can de�ne x-axis and y-axis spin angular momentum
operators as well: these are listed in table 2.

The usefulness of this quantum mechanical representation is seen when we calculate
spin state probabilities along various directions. The electron spin can be measured along
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Table 2. Spin operators and eigenvectors

Spin operator Eigenvectors Eigenvalues

Sx =

(
0 1

2
1
2

0

) ( 1√
2
1√
2

)
,

( −1√
2
1√
2

)
1
2
,−1

2

Sy =

(
0 −i

2
i
2

0

) (
1√
2
i√
2

)
,

(
i√
2
1√
2

)
1
2
,−1

2

Sz =

(
1
2

0
0 −1

2

) (
1
0

)
,

(
0
1

)
1
2
,−1

2

any direction, and orthogonal measurements give independent results. Firstly, we measure
the electron spin state along the z direction. Before the measurement, a general spin state
is written as

|s⟩ = a |+⟩z + b |−⟩z = a

(
1
0

)
+ b

(
0
1

)
Without any measurement or �ltering, we have a = b = 1√

2
, which means 1

2
probability

for each spin eigenstate. Acting with the operator Sz on |s⟩ means observing the average
spin state along the z axis:

Sz |s⟩ =
a

2

(
1
0

)
− b

2

(
0
1

)
Suppose that we want to know just the coe�cient b of the spin state. This is obtained

by the following expression:

z ⟨−| s⟩ = a
(
0 1

)†( 1
0

)
+ b
(
0 1

)†( 0
1

)
= b

The above method can be checked for all other directions, and shows that our eigen-
vectors are orthogonal for any measurement direction.

Suppose that we also want to know the spin along the x direction. We write the above
eigenvectors as follows:

|+⟩z =
(

1
0

)
=

1√
2

[( 1√
2
1√
2

)
−
( −1√

2
1√
2

)]
=

1√
2
[|+⟩x − |−⟩x]

|−⟩z =
(

0
1

)
=

1√
2

[( 1√
2
1√
2

)
+

( −1√
2
1√
2

)]
=

1√
2
[|+⟩x + |−⟩x]

The above result means that if we �lter the electron to be in the |+⟩z state, a subse-
quent spin measurement along the x axis yields equal probability of �nding the electron
in any of the two spin states. Similarly, upon �ltering the electron to be in the |−⟩z
state, a subsequent spin measurement along the x axis yields again equal probability of
�nding the electron in any of the two spin states. Therefore, our mathematical notation
captures the independence of spin measurements in orthogonal directions. In the x − z
plane, a rotation of spin measurement direction is described by a rotation of eigenvectors

according to the R =

(
cos θ − sin θ
sin θ cos θ

)
rotation matrix.

In the y−z plane, a rotation of spin measurement direction is described by a rotation of
eigenvectors between real and imaginary axes. This rotation is described in the appendix.
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Having clari�ed the spin state notation for one electron, let us move on to two-electron
systems. The quantum mechanical state of a two-electron system is represented by the
tensor product of each electron state. Therefore, the two-electron spin state is represented
by a tensor product of individual electron spin states.

Definition. The spin-singlet state of two electrons is de�ned as the anti-parallel
orientation of their spin states:

(1.5.2) |↑↓⟩ ≡ 1√
2

[(
1
0

)
⊗
(

0
1

)
−
(

0
1

)
⊗
(

1
0

)]
where we formed the two-electron spin state via an anti-symmetric combination of anti-
parallel oriented spin states. The advantage of this de�nition is that it not only captures
the anti-parallel pairing process, but also implicitly captures the isotropy associated with
the pairing. In the following, we prove this isotropy.

Theorem 2. A spin-singlet state de�ned according to equation 1.5.2 means that the

two electrons' spin angular momenta are isotropically correlated and the resulting two-

electron spin state is rotationally invariant.

For a spin measurement in the z direction, equation 1.5.2 remains in its above-de�ned
form:

|↑↓⟩z =
1√
2

[(
1
0

)
⊗
(

0
1

)
−
(

0
1

)
⊗
(

1
0

)]
For a spin measurement in the x direction, equation 1.5.2 is written as:

|↑↓⟩x =
1√
2

[( 1√
2
1√
2

)
⊗
( −1√

2
1√
2

)
−
( −1√

2
1√
2

)
⊗
( 1√

2
1√
2

)]
=

=
1√
2

(
1

2
+

1

2

)[(
1
0

)
⊗
(

0
1

)
−
(

0
1

)
⊗
(

1
0

)]
To see the above result, one may expand

( 1√
2
1√
2

)
⊗
( −1√

2
1√
2

)
as:

1

2

(
1
0

)(
0
1

)
− 1

2

(
0
1

)(
1
0

)
− 1

2

(
1
0

)(
1
0

)
+

1

2

(
0
1

)(
0
1

)
Similarly, one may expand −

( −1√
2
1√
2

)
⊗
( 1√

2
1√
2

)
as:

1

2

(
1
0

)(
0
1

)
− 1

2

(
0
1

)(
1
0

)
+

1

2

(
1
0

)(
1
0

)
− 1

2

(
0
1

)(
0
1

)
The equivalence between |↑↓⟩z and |↑↓⟩x follows by adding the above expressions. We

thus get exactly the same result for the spin measurement in the z and x directions.
Regarding an arbitrary spin measurement direction in the x − z plane, the eigenvectors
transform via the above explained R rotation matrix, and the reader may validate that

1√
2

[
R

(
1
0

)
⊗R

(
0
1

)
−R

(
0
1

)
⊗R

(
1
0

)]
evaluates to equation 1.5.2. The same

result can be worked out also for the y direction: this calculation is shown in the appendix.
Therefore, equation 1.5.2 expresses isotropic spin entanglement in all directions. The proof
of theorem 2 is complete.

We note that spin-singlet states are also invariant under the SL(2,C) group action,
which is a more general symmetry than just rotational invariance. This symmetry is
studied in reference [5].
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Definition. The spin-triplet state of two electrons is de�ned as the parallel orienta-
tion of their spin states:

(1.5.3) |↑↑⟩ ≡ 1√
2

[(
1
0

)
⊗
(

1
0

)
+

(
0
1

)
⊗
(

0
1

)]
where we formed the two-electron spin state via a combination of parallel oriented spin
states. Again, the advantage of this de�nition is that it not only captures the parallel
pairing process, but also implicitly captures the isotropy associated with the pairing.

Theorem 3. A spin-triplet state de�ned according to equation 1.5.3 means that the

two electrons' spin angular momenta are isotropically correlated and the resulting two-

electron spin state is rotationally invariant.

For a spin measurement in the z direction, equation 1.5.3 remains in its above-de�ned
form:

|↑↑⟩z =
1√
2

[(
1
0

)
⊗
(

1
0

)
+

(
0
1

)
⊗
(

0
1

)]
For a spin measurement in the x direction, equation 1.5.3 is written as:

|↑↑⟩x =
1√
2

[( 1√
2
1√
2

)
⊗
( 1√

2
1√
2

)
+

( −1√
2
1√
2

)
⊗
( −1√

2
1√
2

)]
=

=
1√
2

(
1

2
+

1

2

)[(
1
0

)(
1
0

)
+

(
0
1

)(
0
1

)]
To see the above result, one may expand

( 1√
2
1√
2

)
⊗
( 1√

2
1√
2

)
as:

1

2

(
1
0

)(
0
1

)
+

1

2

(
0
1

)(
1
0

)
+

1

2

(
1
0

)(
1
0

)
+

1

2

(
0
1

)(
0
1

)
Similarly, one may expand

( −1√
2
1√
2

)
⊗
( −1√

2
1√
2

)
as:

−1

2

(
1
0

)(
0
1

)
− 1

2

(
0
1

)(
1
0

)
+

1

2

(
1
0

)(
1
0

)
+

1

2

(
0
1

)(
0
1

)
The equivalence between |↑↑⟩z and |↑↑⟩x follows by adding the above expressions. We

thus get exactly the same result for the spin measurement in the z and x directions. Re-
garding an arbitrary spin measurement direction in the x−z plane, the eigenvectors trans-
form via the R rotation matrix, and the reader may validate that

1√
2

[
R

(
1
0

)
⊗R

(
1
0

)
+R

(
0
1

)
⊗R

(
0
1

)]
evaluates to equation 1.5.3. The anal-

ogous calculation for the y direction is also shown in the appendix. Therefore, equation
1.5.3 expresses isotropic spin entanglement in all directions. The proof of theorem 3 is
complete.

In summary, the usual formalism of quantum mechanics demonstrates that both spin-
singlet and spin-triplet states are rotationally invariant. Therefore, both states lead to
a well-de�ned electron energy eigenstate, which is the pre-requisite for pair-wise electron
occupancy of a quantum mechanical orbital. In the past, only the spin-singlet state was
considered, due to malformed electron statistics rules. In contrast, our results show that
an electron pair of any orbital may be found in spin-triplet state as well. We emphasize
that the parallel spin correlation of a spin-triplet state is still an averaged value: the two
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electrons are in incoherent state, involving Larmor precession. However, this constella-
tion of parallel averaged spins is precursor to the establishment of strictly parallel spin
orientation, which is the subject of the following section.

1.6. Spin statistics for coherent electron states

1.6.1. Methodology. Our goal is to determine whether N electrons could indeed
form a coherent wavefunction of the form ψ =

√
neiφ |s⟩, where φ is the quantum mechan-

ical phase of the common wavefunction, n ≡ N
V
is its electron density, and |s⟩ is its spin

state. Up to now, this question was approached dogmatically via Pauli's spin value based
classi�cation scheme, but we already showed that the electron spin value is irrelevant to
the Pauli exclusion principle.

Directly employing the formalism of quantum mechanics, it remains impossible to
decide whether a coherent electron wavefunction would form. Using the Schrödinger
equation, it is easy to see that having four electrons in the 1s orbital is lower energy
con�guration than having two electrons in the 1s and two electrons in the 2s orbitals.
However, the generally observed beryllium con�guration comprises two electrons in the
1s and two electrons in the 2s orbitals. Clearly, relying on Schrödinger equation based
energy minimization is does not give the correct answer. What we are missing is the
thermodynamic principle that determines whether coherent or incoherent electron state
is preferred under a give set of conditions. One could try to remedy the situation by
comparing the von Neumann entropy of coherent and incoherent electron states. Unfor-
tunately, such an approach does not capture the entropy associated with the presence
versus absence of individual electrons' Larmor precessions.

One possible approach is phenomenological. The analysis of AC Josephson e�ect in
chapter 4 unambigously demonstrates the existence of N electrons' coherent wavefunction.
Readers preferring the phenomenological approach may check the proofs in chapter 4 and
skip to the next section.

The other possible approach is to look beyond the operator-based formalism of quan-
tum mechanics, which deals with measurement outcomes on wavefunctions, and to con-
sider the wavefunction generating process. In other words, a brief discussion of wave-
particle duality is required in order to understand electron-electron interaction at the
microscopic scale. Readers who are interested in such electron-electron interaction dy-
namics, which determines whether a coherent state is possible, should continue reading
this section.

1.6.2. A review of the Darwin Lagrangian. In this section we shall make use the
so-called Darwin Lagrangian, which we therefore brie�y review. The Darwin Lagrangian
is well-known for modeling the interaction among a large number of massive charged
particles. It is de�ned as follows:

(1.6.1) LD =
N∑
a=1

{
1

2
mav

2
a +

1

2
[eAa (ra) · va − eaϕa (ra)]

}
where ra is the vectorial position of a given particle, ea is its charge value, va is its velocity,
and ma is its mass. Aa (ra) and ϕ (ra) are the vector potential and Coulomb potential at
position ra, and N is the total number of the interacting particles.

The Coulomb potential ϕa (ra) is given by:

ϕa (ra) =
N∑
b̸=a

eb
rab
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where rab = |rab| = |rb − ra| is the euclidean distance from other particles.
Particles a and b moving parallel to their distance vector have no magnetic interaction,

and consequently only the vb⊥ component of the charge velocity vector shall contribute
to the vector potential at ra:

vb⊥ = vb − (vb · ruab) ruab
where vb is the charge velocity vector, vb⊥ is its orthogonal component to the distance
vector rab, and ruab =

rab

rab
is the unit length vector.

The Aab (ra) vector potential contribution of particle b is therefore given by:

Aab (ra) =
ebvb⊥
rab

=

=
eb [vb − (vb · ruab) ruab]

rab
We note that Aba · vb = Aab · va.
In the above equationsAab is the contribution of particle b to the vector potential Aa.

The overall vector potential Aa at ra is the sum of contributions by all other particles:

(1.6.2) Aa (ra) =
N∑
b̸=a

Aab (ra) =
N∑
b ̸=a

eb [vb − (vb · ruab) ruab]
rab

The Aa and ϕa terms are halved in the Darwin Lagrangian in order to avoid a double
counting of contributions to the collective interaction potential, considering thatAab ·va =
Aba · vb and ϕab = ϕba.

1.6.3. A brief review of electron Zitterbewegung. The existence of electron
Zitterbewegung was �rst suggested by De Broglie, who proposed the mc2/h oscillation
frequency named after him, and then directly described as a light-speed oscillation by
Schrödinger. Reference [10] presents an experimentally validated Zitterbewegung model
of the electron structure. As shown in [10], the electron spin is generated by its circular
Zitterbewegung oscillation. This idea of the electron spin being generated by circular
Zitterbewegung oscillation has a long history; reference [14] presents a thorough discussion
of this topic. The Thomson scattering phenomenon is electron-light interaction in the low
photon frequency limit: it measures the electron's �reduced Compton radius� size, which
corresponds to the radius of light-speed charge circulation at the mc2/h frequency.

In quantum theory, Zitterbewegung appears in the free electron a solution of the Dirac
equation. A comprehensive introduction to the Dirac equation can be found in chapter
5 of reference [10]. Taking the Heisenberg picture, and solving the Dirac equation for
the electron position yields a high frequency oscillation term, with the corresponding
oscillation velocity being the speed of light. This constant velocity implies a circular
Zitterbewegung oscillation at light-speed. The details of this calculation can be found for
example on pages 322-323 of [8]. In modern quantum theory, Zitterbewegung oscillation
shows up in the Gordon decomposition of the Dirac current, which splits the charge
current into a part that arises from the motion of the center of mass, and a part that
arises from gradients of the spin density. The equivalence between the Heisenberg picture
based electron position calculation and the Gordon decomposition is discussed in reference
[].

We now demonstrate that the electron's quantum mechanical wavelength is in fact
the Lorentz-transformed spatial component of its Zitterbewegung oscillation. Consider an
electron moving at kinetic speed v. In relation to light-speed, its speed is characterized
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by β = v
c
, γL = (1− β2)

− 1
2 and rapidity w de�ned as γL = coshw. It follows that

cosh2w − sinh2w = 1, tanhw = β, and sinhw = γLβ.
In the electron's rest frame, its Zitterbewegung is a time-wise oscillation. A relativistic

boost rotates the time and space axes into each other according to the following hyperbolic
rotation matrix: (

ct′

x′

)
=

(
coshw − sinhw
− sinhw coshw

)(
ct
x

)
Therefore, the time-wise Zitterbewegung oscillation of the rest frame acquires a spatial

oscillation component in the boosted reference frame. Speci�cally, the Zitterbewegung
frequency of the rest frame is ω

2π
= m0c2

h
, and this is commonly referred to as the De

Broglie frequency. The quantum mechanical wavenumber of the rest frame is: k0 = 0.
The corresponding wavenumber in the boosted frame is:

k

2π
=

ω

2π

sinhw

c
− k0 coshw =

ω

2π

sinhw

c
Evaluating the right side of the above equation, we obtain:

k

2π
=
m0c

2

h

γLv

c2

Rearranging the above equation, we �nally obtain:

ℏk = (γLm0) v = mv = pkinetic

We recognize the above result as the basic postulate of quantum mechanics. However,
it no longer needs to be a postulate: the appearing quantum mechanical wave is simply
the Lorentz transformed component of the electron's Zitterbewegung oscillation. In this
sense, all quantum mechanical wavelength measurements validate the Zitterbewegung
structure of the electron, with the Zitterbewegung frequency being mc2/h.

By de�nition, a coherent state of electrons means that they maintain the same quan-
tum mechanical wavelength; this implies the coherence of their Zitterbewegung phases,
and vice versa.

1.6.4. The stable equilibrium of coherent electron states. Considering the mi-
croscopic interaction among electrons, the Zitterbewegung Lagrangian of N interacting
charges can be written analogously to the Darwin Lagrangian, but replacing the kinetic
electron speed with the light-speed Zitterbewegung speed vector c. Speci�cally, the Zit-
terbewegung Lagrangian must include the contributions of all other charges:

(1.6.3) LN = −
N∑
a=1

[eaAa · ca − eaVa] = 0

where LN = 0 is the condition for stable equilibrium. In the above equation, A is the
vector potential generated by electrons' Zitterbewegung rotation at light speed, while V
is the Coulomb potential at their charge surface. A detailed derivation of equation 1.6.3
can be found in chapter 4 of reference [10].

At �rst sight, it might appear that we replaced the quantum mechanical approach by
a classical approach, but that is not the case. Consider N coherent electrons forming a
standing wave within a square potential well. We switch from the laboratory frame to a
frame that is co-moving with the electrons; then each individual electron Zitterbewegung
appears as illustrated in �gure 1.6.1. Although we do not know the individual electron
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positions, their relative distance is de�ned by the enclosure. We can use equation 1.6.3 to
examine the electric and magnetic interactions among electrons; the obtained equilibrium
states must remain in equilibrium also from the laboratory frame perspective. Essen-
tially, the proper use of Lorentz transformation allows us to work with the wavefunction-
generating particle aspect, instead of performing a more di�cult calculation directly on
the electron wavefunction.

In the following, we use c=1 Natural units notation for convenience. Calling rec
the electron charge radius, re the Zitterbewegung radius, me the electron mass, ωe the
Zitterbewegung angular speed and c the charge velocity vector in vacuum, we relate these
values to each other in Natural units notation:

V =
e

rec
=

e

αre
=

1

ere

A =
ec

αre
=

c

ere
where α is the electromagnetic �ne structure constant.

The relativistic momentum of the electron charge is always given by eAa = maca.
Calling mo the electron rest mass, the kinetic energy term of any given electron can be
written as:

(1.6.4) eAa · ca = maca · ca = ma = γm0 =
m0√
1− v2a

≃ m0 +
1

2
m0v

2
a

The above result means that the eaAa · ca term already incorporates the electron
kinetic energy. Equation 1.6.3 therefore gives the complete Lagrangian equation: unlike
in the classical Darwin Lagrangian case, there is no additional 1

2
mav

2
a term.

Using the LN = 0 is the condition for stable equilibrium, we shall demonstrate the
existence of a coherent state of N electrons, as a stable equilibrium state.

Theorem 4. In the absence of noise, N coherent electrons form a stable equilibrium

state

When N = 1, the Lagrangian expression becomes La = − [eaAa · ca − eaVa]. La

is always zero as a consequence of the two Aharonov-Bohm equations that relate the
Zitterbewegung rotation phase φ to the electromagnetic potentials. To see this, let us
calculate the di�erential dφ term, keeping in mind that the Zitterbewegung phase is
equivalent to the quantum mechanical wavefunction's phase.

On the one hand, the dφ phase change can be calculated from the magnetic Aharonov-
Bohm equation:

dφ = eaAa · dl = eaAa · cadt

On the other hand, the same dφ phase change can be calculated from the electric
Aharonov-Bohm equation:

dφ = eaVadt

Dividing the above two equations by dt, we can equate them. Consequently:

(1.6.5) La = − [eaAa · ca − eaVa] = 0
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eaAa · ca = eaVa

The above result means that each individual electron's total energy is the same as the
potential energy on the surface of its electric charge.

We now evaluate Aa (ra) and Va (ra) for N interacting electrons:

(1.6.6) Aa (ra) =
eaca
αrea

+
1

2

∑
i ̸=j

ebcb⊥
rab

=

=
eaca
αrea

+
1

2

∑
a̸=b

eb [cb − (cb · ruab) ruab]
rab

(1.6.7) Va (ra) =
ea
αrea

+
1

2

∑
a̸=b

eb
rab

In both of these last two equations, the �rst terms are the self-interaction contributions.
In equation 1.6.6, the cb⊥ component of the charge velocity vector cb is orthogonal to the
distance vector rab. Analogously to the Darwin Lagrangian case, only this cb⊥ component
will contribute to the value of the vector potential Aa (ra).

The eaAa · caand eaVa terms of equation 1.6.3 can now be calculated as follows:

eaAa · ca =
e2a
αrea

c2a +
1

2

∑
a̸=b

eaeb [cb − (cb · ruab) ruab] · ca
rab

eaVa =
e2a
αrea

+
1

2

∑
a̸=b

eaeb
rab

where e2a = α and c2a = 1.
Since all charged particles are electrons, it is possible to write their charges as eaeb = α,

and the expression for LN becomes:

(1.6.8) LN = −
N∑
a=1

[
e2a
αrea

c2a −
e2a
αrea

+
1

2

∑
a̸=b

α [ca · cb − (ca · ruab) (cb · ruab)− 1]

rab

]
Considering that the charges speed is always c = 1, the �rst two terms of the above

expression cancel out. Equation 1.6.8 therefore simpli�es to:

LN = −1

2

N∑
a=1

∑
a̸=b

α [ca · cb − (ca · ruab) (cb · ruab)− 1]

rab

ThisLN Lagrangian is zero (i.e. minimized) for a collection of coherent electrons where
the Zitterbewegung phase is the same for all electron charges, and their Zitterbewegung
planes are parallel to each other. In this case ca · cb = 1, and ca · ruab = cb · ruab = 0. The
LN = 0 result directly follows from these conditions, and therefore the coherent state
of N electrons is a stable equilibrium state. The proof of theorem 4 is thus complete;
we showed the principal existence of coherent electrons states. Figure 1.6.1 illustrates
this microscopic constellation of coherent electrons. We emphasize that the position of
coherent electrons is stable only with respect to each other, but remains undetermined
with respect to the laboratory frame: each delocalized electron forms a standing wave,
and their positions are distributed within the standing wave.
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Figure 1.6.1. An illustration of electrons' coherent state. The dotted
line represents the shared Zitterbewegung axis, the ellipses represent the
0.386 pm radius Zitterbewegung trajectories, and the colors represent the
Zitterbewegung phase. Each electron has the same momentum, and their
kinetic speed vectors point along the Zitterbewegung axis.

The above results directly show the absence of Larmor spin-precession in coherent
electrons' equilibrium planes; the involved Zitterbewegung planes remain parallel to each
other. Since all coherent electrons are part of the exact same quantum mechanical wave,
individual electron spin measurement is impossible. The LN = 0 condition of equation
1.6.8 allows adding any number of electrons, and therefore we conclude that coherent
electrons obey Bose-Einstein statistics.

Recalling that any electron's momentum is given by eaAa, we can write down the
Hamiltonian that corresponds to LN :

(1.6.9) HN =

[
N∑
a=1

eaAa · ca

]
− LN =

N∑
a=1

eaAa · ca − [eaAa · ca − eaVa]

HN =
N∑
a=1

eaVa

where we used equation 1.6.3 for evaluating LN .
The obtained Hamiltonian expression is rather simple. According to equation 1.6.7,

Va is minimized when the coherent electrons are as far apart as possible. The various
constellations of inter-electron distances can be understood analogously to atomic orbitals:
all atomic orbitals are equilibrium states, and the ground state orbital is the energy-
minimizing equilibrium state. Therefore, in the energy-minimizing coherent state the N
electrons maximize their distance - within the constraints of their enclosure.

A key result of the above analysis is that the inter-electron distances may vary while
maintaining a coherent state. This opens up a new degree of freedom for micro-

scopic oscillations: the local density of coherent electrons can �uctuate. Such
oscillations will be investigated in the following chapter.

1.7. The incoherent-coherent electron state transition

1.7.1. The driving force of electrons' Bose-Einstein condensation. It follows
from our results that the actual particle spin value plays no role, and that obeying
Fermi-Dirac versus Bose-Einstein statistics is not any inherent property of a particle.
Up to now, experimental investigations of Bose-Einstein condensates focused on low-
temperature atomic condensates. In such atomic condensates, which form at ultra-low
temperatures, experiments show that Bose-Einstein condensed atoms occupy the same
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quantum mechanical state, forming a matter-wave [11, 12] that is also spin-coherent
[13]. Since the coherent state Lagrangian of section 1.6.4 universally applies to any par-
ticles that have a spin, the Bose-Einstein condensation of electrons is analogous to the
atomic condensate case.

Let us consider a transition from the incoherent state of paired electrons into a variable
state occupancy by coherent electrons. During such a transition, electrons enter one-by-
one into a coherent state, when it is thermodynamically favorable. Within a delocalized
standing wave, coherent electrons maximize their relative distance, as required by equation
1.6.9.

In vacuum, it follows from equation 1.6.9 that a coherent electron state is metastable
because of the electrostatic repulsion term - unless these electrons are trapped in a po-
tential well. Within a metal, the electrostatic electron potential is counter-balanced by
the positively charged nuclear sites. It follows from equation 1.6.9 that a coherent state
of conduction-band electrons has the same thermodynamic property as a non-interacting
atomic gas.

Electron coherence therefore becomes driven by the energy gain of low-energy delo-
calized states being occupied by numerous electrons. However, the coherence of electrons
can be disrupted by thermal �uctuations, and therefore coherent states remain stable only
as long as they are thermodynamically favorable. In other words, Bose-Einstein statistics
applies to delocalized electrons when the coherence equations of section 1.6.4 are thermo-
dynamically favored over pair-wise spin correlations. The thermodynamic condition for
electrons' Bose-Einstein condensation can be precisely calculated: delocalized electrons'
Bose-Einstein condensation temperature shall be derived in chapter 3.

1.7.2. Overcoming the energy barrier against the break-up of incoherent

spin-singlet pairs. Incoherent electrons' pairwise spin correlation, which forms spon-
taneously, involves local energy minimization via magnetic spin interactions. Larmor
spin-precessing singlet electron pairs must be broken up before the involved electrons can
synchronize their spins into a coherent state. While cooling a metal promotes electrons'
Bose-Einstein condensation, at the same time it hinders the thermal break-up of Larmor
spin-precessing singlet electron pairs. Whether a metal may become superconducting thus
depends on the balance of these two factors.

In order to overcome the energy barrier against the break-up of incoherent spin-singlet
pairs, some physical mechanism must provide the needed electron excitation energy. This
cannot be thermal energy, since thermal energy �uctuations are negligible at low temper-
ature. The remaining electron excitation source is the process that occasionally scatters
conduction-band electrons; i.e. the same process that causes electric energy dissipation
in a normal-state conductor provides the excitation energy to singlet electron pairs. As
a consequence, a poorly conducting metal more easily enters superconducting state. The
phenomenological Homes' law captures exactly this insight; it states that Tc ∼ nsσ

−1
dc ,

where Tc is the superconducting transition temperature, ns is the density of superconduct-
ing electrons at T → 0, and σdc is the DC electric conductivity just above Tc. Needless to
say, the discovery of Homes' law surprised superconductivity researchers because nothing
suggested in preceding theories that electron scattering would be bene�cial for reaching
the superconducting phase transition. For the �rst time, we shed light on the microscopic
origin of Homes' law.

At ambient pressure, about half of elementary metals become superconducting, with
Tc being in the 0-9 K temperature range. Under applied pressure, most elementary
metals become superconducting, with Tc being in the 0-29 K temperature range. The
exceptional elementary metals, which do not superconduct even under applied pressure
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are: i) ferromagnetic metals, ii) noble metals, and iii) several alkali metals. Noble and
alkali metals are characterized by a relatively high electric conductivity; for the above
explained reasons it is indeed anticipated that superconductivity would be most di�cult
to establish in these groups of metals.

Regarding ferromagnets, the interference of internal magnetic �elds with Bose-Einstein
condensation is well-known, and has been also observed in super�uids. This explains the
absence of superconductivity in ferromagnets. Iron, for example, becomes superconduct-
ing above the pressure where its crystal structure changes into a non-ferromagnetic phase.

1.8. Summary

Our results demonstrate that it is the presence or absence of Larmor spin-precession in
electron-electron interactions that determines the applicable statistics. A stable quantum
mechanical wavefunction is an eigenstate solution of the Dirac equation, and such an
eigenstate requires isotropic spin correlation of participating electrons. When Larmor
precession is present, no more than two electrons may form isotropic spin correlation.
In the absence of Larmor spin-precession, which is realized by coherent electrons, and
arbitrary number of electrons may form isotropic spin correlation.

It follows from our results that the actual particle spin value plays no role, and that
obeying Fermi-Dirac versus Bose-Einstein statistics is not any inherent property of a
particle. Therefore the categorization of elementary particles into �fermion� versus �boson�
classes is not always applicable.

The realization of Bose-Einstein condensed electron wavefunctions depends on the
thermodynamics of a given system. Our analysis of coherent electron states demonstrates
that they represent a lower entropy of electrons than the Larmor spin-precession involving
incoherent states. These results facilitate a detailed energy change versus entropy change
comparison of possible electron states, which is the pre-condition for a �rst-principles
calculation of the Bose-Einstein transition temperature. This calculation will be the
focus of a later chapter.

As the preference of Fermi-Dirac versus Bose-Einstein statistics is thermodynamically
determined for a given system, an increasing mechanical pressure eventually becomes
a thermodynamic driver for electron coherence: electron coherence mitigates the grow-
ing pressure by allowing the shared occupancy of low-energy states. The Bose-Einstein
condensation of electrons should therefore play a role in geological and astrophysical phe-
nomena that involve extreme gravitational forces and pressures.

Although we focused on electron examples, our equations in fact universally apply
to any particle that has a spin. The Bose-Einstein condensation of electrons is observed
in the few Kelvin to 100 Kelvin temperature range in superconductors. At ultra-low
temperatures, the Bose-Einstein condensation of even 87Rb nuclei is observed [15], as an-
ticipated. The temperature di�erence between electron versus 87Rb condensation relates
to the inverse proportionality between the particle mass and its Bose-Einstein condensa-
tion temperature.

If the Bose-Einstein condensation of some conduction band electrons is realized, it
directly follows that a variable electron electron occupancy of the conduction band's
ground state is superconducting due to the macroscopically large wavelength of added
and removed electrons. The inter-electron distances may vary within such a multi-electron
ground state, and this opens up a new degree of freedom for microscopic oscillations.

While the calculation of electron binding energies in the 1920's clari�ed one half of
chemistry, it took 100 years to clarify the other half of chemistry which is related to
electron statistics.
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Appendix: Spin measurement along any direction

In section 1.5, we calculated spin correlations in the x − z plane, according to the
spin eigenvector de�nitions of table 2. Here, we show analogous calculations for the y− z
plane. Together, these results demonstrate the isotropy of spin correlations along any
spin measurement direction. We start by expressing the |+⟩z and |−⟩z spin eigenvectors
in terms of y-axis spin states:

|+⟩z =
(

1
0

)
=

1√
2

[(
1√
2
i√
2

)
− i

(
i√
2
1√
2

)]
=

1√
2

[
|+⟩y − i |−⟩y

]
|−⟩z =

(
0
1

)
=

1√
2

[
−i

(
1√
2
i√
2

)
+

(
i√
2
1√
2

)]
=

1√
2

[
−i |+⟩y + |−⟩y

]
The above equations mean that if we �lter the electron to be in the |+⟩z state, a

subsequent spin measurement along the y axis yields equal probability of �nding the
electron in any of the two spin states. Similarly, upon �ltering the electron to be in the |−⟩z
state, a subsequent spin measurement along the y axis yields again equal probability of
�nding the electron in any of the two spin states. This is analogous to the result explained
in section 1.5 for the x direction; our mathematical notation captures the independence
of spin measurements in orthogonal directions.

While in the x − z plane a rotation of spin measurement direction was described by
an ordinary rotation matrix, the above equations show that in the x − z plane the spin

eigenvectors are rotated according to the R′ =

(
cos θ −i sin θ

−i sin θ cos θ

)
rotation matrix.

Moving on to electron spin correlations, consider the anti-parallel aligned spin-singlet
state of two electrons. In terms of z-axis measurement, we described it in the following
form:

|↑↓⟩z =
1√
2

[(
1
0

)
⊗
(

0
1

)
−
(

0
1

)
⊗
(

1
0

)]
For an arbitrary spin measurement direction in the y − z plane, the eigenvectors

transform via the above explained R′ rotation matrix, and the reader may validate that

the 1√
2

[
R′
(

1
0

)
⊗R′

(
0
1

)
−R′

(
0
1

)
⊗R′

(
1
0

)]
expression evaluates to the same

result as the z-axis measurement. Equation 1.5.2 therefore expresses isotropic spin entan-
glement with respect to any measurement direction.

Lastly, consider the parallel aligned spin-triplet state of two electrons. In terms of
z-axis measurement, we described it in the following form:

|↑↓⟩z =
1√
2

[(
1
0

)
⊗
(

1
0

)
+

(
0
1

)
⊗
(

0
1

)]
For an arbitrary spin measurement direction in the y − z plane, the eigenvectors

transform via the above explained R′ rotation matrix, and the reader may validate that

the 1√
2

[
R′
(

1
0

)
⊗R′

(
1
0

)
+R′

(
0
1

)
⊗R′

(
0
1

)]
expression evaluates to the same

result as the z-axis measurement. Equation 1.5.3 therefore expresses isotropic spin entan-
glement with respect to any measurement direction.
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Abstract: We explore the physical origin of superconductors' perfect diamagnetism.
It turns out that this diamagnetic e�ect di�ers from the dynamics of free-�owing electron
pairs. The identi�ed di�erences are highlighted; these are direct experimental refutations
of �free-�owing electron pairs� based superconductivity models. Applying the condition of
total energy minimization, we present the �rst rigorous derivation of the London equation,
which governs this e�ect. We show how this diamagnetic e�ect enables the density mea-
surement of superconducting electrons, calculate the microscopic electron vortices which
collectively generate the Meissner �ow of current, and show that the magnetic �eld of
rotating superconductors is generated by the same diamagnetic e�ect.

2.1. Residual diamagnetism above Tc

Superconductors have perfect diamagnetism; they completely expel an externally ap-
plied magnetic �eld. Does superconductors' diamagnetism disappear abruptly or gradu-
ally above Tc? Figure 2.1.1 reveals a universal relationship of residual diamagnetism in
superconducting materials, extending to twice the superconducting temperature in some
cases. Therefore, diamagnetism does not just suddenly appear at Tc, but a residual dia-
magnetism remains even above Tc.

It can be seen in �gure 2.1.1 that the residual diamagnetism of elementary metals,
such as Pb, extends only very slightly above the critical temperature. In contrast, Tonset
extends far above Tc in high-temperature superconductors.

2.2. The London equation

The London equation was proposed in the 1930s as a phenomenological equation
for describing the interaction between magnetic �elds and superconductors, which are
known for their perfect diamagnetism. One may try to understand such interaction by
using Maxwell's equation to calculate the currents induced by a time-varying magnetic
�eld, which is gradually ramped up from zero to its �nal value. Such calculation is
presented for example in chapter 6 of [2]. The calculation of induced currents reveals that
a perfect conductor indeed diamagnetically responds to a time-varying magnetic �eld;
the induced surface currents expel the magnetic �eld from its interior. Unfortunately,
such calculation does not yet explain how diamagnetism works in superconductors. As
illustrated in �gure 2.2.2, a superconductor expels magnetic �elds even when dB

dt
= 0;

e.g. when its temperature is cooled below Tc. A more general approach is to solve for
the global minimum of free energy, and such approach is applicable for Bose-Einstein
condensates. A recent textbook recognizes that the London equation gives an energy
minimizing solution [3], but omits a proper derivation. This same recognition appears in
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Figure 2.1.1. Above-Tc residual diamagnetism in various superconduc-
tors. The horizontal axis measures t = T

Tc
− 1, and thus T = Tc at the

origin. The vertical axis shows magnetization Hm at a given temperature,
as a fraction of the room temperature magnetization Hm0. The zero of the
vertical axis represents perfect diamagnetism. Reproduced from [1].

several articles [4, 5], but always without mathematical derivation, as far as the authors
know. We therefore endeavor to derive the London equation in the following paragraphs.

First counter-evidence to the �free-�owing electron pairs� based supercon-

ductivity models: We �rstly consider type-I superconductors, which have isotropic
structure. We note that a series of works [6, 7, 8, 9] demonstrated already in the
1930s that the superconducting-normal state transition in the presence of a magnetic
�eld occurs without sudden energy dissipation; calorimetry indicates that the supercon-
ducting current stops without any heat spike. Figure 2.2.1 illustrates the B − T phase
diagram of a type-I superconductor. Starting from state �P� on �gure 2.2.1, a reversible
superconducting-normal state transition may be induced either by raising temperature or
by raising magnetic �eld strength. According to the traditional theory of superconduc-
tivity, superconducting electrons �ow without energy dissipation, and they are abruptly
converted to normal conduction band electrons once the external magnetic �eld reaches a
critical value. Thus, traditional theory predicts that the superconducting �Meissner �ow�
inevitably produces Joule heating upon superconducting-to-normal phase transition due
to the transition of superconducting electrons into normal state, that �ow with dissipa-
tion. The predicted Joule heating, which should be generated during the phase transition,
will make it an irreversible transition. But this prediction contradicts the experimentally
observed reversible phase transition in a magnetic �eld. This 90 years old contradiction
indicates that serious revisions are needed in the standard theory.

The superconducting �Meissner �ow�, which causes the perfect diamagnetism of su-
perconductors, comprises induced currents of Bose-Einstein condensed electrons. The
microscopic structure of this �ow shall be described in the last part of this chapter. The
Meissner �ow is illustrated in �gure 2.2.2, and it carries an associated kinetic energy.
What happens to superconducting electrons' kinetic energy beyond the superconducting-
to-normal phase transition in a type-I superconductor? The example of Pb on �gure
2.1.1 already revealed that there is no abrupt change of diamagnetism, and therefore the
kinetic energy remains nearly the same also on the normal side of the phase transition.
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Figure 2.2.1. The phase diagram for a type I superconductor. B is the
externally applied magnetic �eld, and T is the temperature. In the �gure,
state �P� is in the superconducting phase and state �Q� is in the normal
phase. There is a reversible state change between �P� and �Q�, irrespective
of the path taken between them.

Figure 2.2.2. An illustration of the Meissner �ow, which arises below
Tc and expels magnetic �eld from the superconductor's interior. Horizontal
arrows indicate Meissner �ow currents in the superconductor's surface re-
gion.

According to �gure 2.1.1, the only change is that the perfect diamagnetism of a Bose-
Einstein condensate is replaced by a residual diamagnetism. In the reverse direction, this
residual diamagnetism converges to perfect diamagnetism as temperature is lowered to
Tc. Perfect diamagnetism is the vertical axis' zero value on �gure 2.1.1. It is seen from
�gure 2.1.1 that there is a smooth convergence to perfect diamagnetism, which means
that the system is in a thermodynamic equilibrium at any point, and thus state changes
are reversible. One may also say that the application of external magnetic �eld lowers
the e�ective Tc. As the magnetic �eld strength is raised from state P to Bc, the tem-
perature at Bc indeed becomes the new Tc: any further increase of temperature triggers
superconducting-to-normal phase transition.

Let us consider what thermodynamic equilibrium looks like in a superconducting ma-
terial, when it is in superconducting phase. Perfect diamagnetism means that magnetic
energy density is zero in the interior. In contrast, there is a magnetic energy density ϱm
in the exterior, while superconducting electrons' translational kinetic energy density ϱk
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is zero in that region. The challenge is to understand what happens in the transitionary
surface region between the exterior and interior zones, where ϱm and ϱk are both non-zero.

Anywhere in the surface region, magnetic energy density is given by:

(2.2.1) ϱm =
1

2µ0

B2

The kinetic energy density of superconducting electrons is:

(2.2.2) ϱk =
meff

2
v2
sns

where ns is the density of superconducting electrons and vs is their velocity. The question
arises whether it is correct to use meff in the above equation, rather than the bare
electron mass. Superconducting electrons are in the lowest energy of the conduction
band. Electrons occupying the lowest-energy conduction band states are observed in
semiconductors, and experiments con�rm that meff applies to delocalized electrons in
semiconductors. The use of meff is therefore justi�ed. The corresponding current can be
written as:

J = evsns
Maxwell's equation de�nes the relationship between J and B:

µ0J = ∇×B

Substituting the above two equations into 2.2.2, we express kinetic energy density in
terms of magnetic �eld:

(2.2.3) ϱk =
meff

2e2µ2
0ns

(∇×B)2

Using equations 2.2.1 and 2.2.3, we can express the total energy density as a function
of magnetic �eld:

(2.2.4) ϱ (B) = ϱm + ϱk =
1

2µ0

B2 +
meff

2e2µ2
0ns

(∇×B)2

Suppose there is a disturbance or variation of the magnetic �eld; we denote this
magnetic �eld variation as vector �eld G. The derivative of energy density with respect
to in�nitesimal magnetic �eld variations is:

(2.2.5) ϱ′ (B,G) =
∂

∂ε
ϱ (B + εG) |ε→0

We now evaluate the above di�erential by substituting equation 2.2.4:

(2.2.6) ϱ′ (B,G) =
1

µ0

(B ·G) +
meff

e2µ2
0ns

(∇×B) · (∇×G)

where we obtained the last term by switching the order of the two di�erential operators:

∂

∂ε
(∇× (B + εG)) = ∇× ∂

∂ε
(B + εG) = ∇×G

Thermodynamic equilibrium requires that the total system energy remains invariant
with respect to small changes in the magnetic �eld, i.e. the system occupies the lowest
energy state:
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ˆ

Ω

ϱ′ (B,G) dV = 0

for any choice ofG, keeping in mind that the variational �eldG vanishes at the boundary.
Here, Ω is the volume region that contains our system. Substituting equation 2.2.6 into
the above equilibrium requirement, we obtain:

ˆ

Ω

[
1

µ0

(B ·G) +
meff

e2µ2
0ns

(∇×B) · (∇×G)

]
dV = 0

We use the
´
Ω
(∇×B) · (∇×G) dV =

´
Ω
(∇× (∇×B)) ·G dV identity, which is

proven in the appendix. Note, that we substituted ∇×B for the vector �eld F that is
used in the appendix. The above equation can therefore be written as:

ˆ

Ω

[
1

µ0

B +
meff

e2µ2
0ns

∇× (∇×B)

]
·G dV = 0

Since the above equation must remain zero for any choice of G, the equilibrium con-
dition is given by:

(2.2.7) B +
meff

µ0nse2
∇× (∇×B) = 0

which is known as the London equation. Our simple derivation shows that the London
equation solves for the lowest energy state.

Since magnetic �elds have zero divergence, we get ∇ × (∇×B) = −∇2B, and the
London equation may be written as:

(2.2.8) ∇2B =
µ0nse

2

meff

B

The solution of the above equation is a B = B0e
−x/λL type exponential decay of B

from the surface towards the interior, over the characteristic distance λL :

(2.2.9)
1

λL
=

√
ns
µ0e2

meff

Thus we obtain a relationship between λL and ns:

(2.2.10)
1

λL
∼

√
ns

Summarizing our results up to now, we demonstrated that superconducting Meissner
�ows are incompatible with free-�owing electron pair models of superconductivity, includ-
ing incompatibility with the phonon-mediated superconductivity model. To be best of
our knowledge, we obtained for the �rst time a mathematically complete derivation of the
London equation.

We apply equation 2.2.9 to calculate the ns value of elementary metals. Lead metal
is a historically most studied superconductor. It has Tc=7.2 K and meff = 1.9me. Its
0.34 nm inter-nuclear distance implies n=(0.27 nm)-3 delocalized electron density with
+2 valence state of nuclear sites. Applying these values to equation 2.2.9 we obtain
λL (0)=33 nm, which is the same order of magnitude as the experimentally measured
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Figure 2.2.3. The chart of λ−2
L in Y Ba2Cu3O6+x (Tc=92 K), as a function

of temperature. λ−2
L is evaluated via muon spin relaxation measurement,

reproduced from [10].

λL (0)=52 nm value. This result means that at T → 0 most conduction band electrons
condense into the superconducting ground state.

We apply equation 2.2.9 to calculate the ns value of high-temperature superconductors.
K3C60 is an isotropic superconductor, and its conduction band electron density is de�ned
by its K+ spacing. K3C60 has λL (0)=480 nm at as T → 0 [11] and meff = 2.4me [12]
values. Applying these values to equation 2.2.9 we obtain ns (0)=(1.5 nm)

-3, which again
corresponds quite well to the 1.4 nm distance between neighboring K+ sites.

So far we studied the diamagnetism of isotropic materials. Most high-temperature
superconductors are however 2-dimensional layered materials. Although magnetic �elds
are expelled also from such layered superconductors, regardless of their orientation, λL
is no longer isotropic: its value is several times larger orthogonally to the 2-dimensional
metallic planes than in parallel directions. Nevertheless, our derivation of equations 2.2.7
and 2.2.9 continues to be valid for layered materials: the employed variational method
does not require isotropy.

As illustrated in �gure 2.2.3, λL → ∞ as T → Tc, and this implies that the density
of superconducting electrons is depleted near Tc according to equation 2.2.9. Keeping in
mind that Tc = TBEC , we get ns → 0 as T → TBEC .

2.3. Rotating superconductors

When a superconducting cylinder is being rotated, a magnetic �eld appears in its
interior. Traditionally, this magnetic �eld was thought to originate from the inertia of
free-�owing electrons. The phenomenology of rotating superconductors is thoroughly
reviewed in reference [13].

Measurements show that the uniform magnetic �eld which �lls all the available interior
has B = −2me

e
ω strength, where ω is the angular frequency of the cylinder's rotation.

Normally, a magnetic �ux is generated by a current I = dQ/dt, and at �rst it seems
obvious that the magnetic �eld would be generated by a current caused by the inertia
of free-�owing electrons, that do not follow the rotation of the superconductive body. It
is interesting to note that the above formula does not depend on the number of charge
carriers involved in the generation of the magnetic �eld B, but depends on the electron
massme. In current textbooks, this is the end of the story about rotating superconductors.

Let us consider what happens to hypothetical free-�owing electrons at the start of
rotation. Since the already superconducting electrons are supposedly completely free to
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Figure 2.3.1. The rotating and cooling of a superconducting hollow
cylinder. Top: cylinder cooled into the superconducting state and then set
into rotation. Bottom: cylinder set into rotation while in the normal state
and then cooled into the superconducting state. Dots represent magnetic
�eld lines which are perpendicular to the �gure, �N� represents normal state,
and �S� represents superconducting state. Reproduced from [13].

�ow in the body, their inertia keeps them at the same location at the moment when the
body starts to rotate. During this start of rotation, a time-dependent magnetic �eld is
generated by the diverging motion of positive ions and superconducting electrons, that
induces a Faraday electric �eld pushing the superconducting electrons in the same direc-
tion as the ions. Consequent to this induced Faraday electric �eld, the superconducting
electrons attain the same velocity as the ions in the interior of the cylinder but lag slightly
behind in the outer surface layer, thus giving rise to the static magnetic �eld con�guration
shown at the top of �gure 2.3.1.

Second counter-evidence to the �free-�owing electron pairs� based super-

conductivity models: As discussed in section 2.2, the dynamics of superconducting
electron currents are dictated by the principle of total energy minimization. Therefore,
in the context of a free-�owing electrons based model, it should be possible to derive the
B = −2me

e
ω formula from the London equation. The London equation's scaling factor,

which is given by equation 2.2.9, implies λL ∼
√

me

ns

1
e
relationship. There is no obvious

way to eliminate the dependence on superconducting electron density, as needed to arrive
at the B = −2me

e
ω formula. Nevertheless, reference [14] claims to derive this formula

from the London equation, and it lists several studies which contain similar derivations.
All these works struggle with the challenge of reconciling the B = −2me

e
ω formula with

the London equation. The problem is very deep-rooted. Consider a long superconductive
cylinder, which is rotating. The magnetic �eld in its interior is B = −2me

e
ω . We cut

the cylinder into two shorter cylinders. Each rotating cylinder still has B = −2me

e
ω mag-

netic �eld in its interior, and it retains the same value regardless of whether the cylinders
are on top of each other or far apart. But this situation is totally contrary to the basic
principles of current-generated magnetic �elds, which dictate that magnetic �elds must
add up when the two pieces are placed on top of each other - just like magnetic �elds of
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solenoid segments add up. We thus come to the following conclusion: the magnetic �eld of
a rotating superconductor cannot be generated by free-�owing currents! This conclusion
is further corroborated by the situation depicted in the bottom half of �gure 2.3.1. In
that scenario, the free-�owing current model dictates that all superconducting electrons
lag behind the main body rotation, but the experiment shows inner surface supercon-
ducting electrons rotating faster than the main body. The traditional explanations of the
free-�owing current model, which are electron inertia based, break down once again.

The correct analysis of rotating superconductors must take into account the conse-
quences of a non-inertial rotating reference frame; this analysis can be found in reference
[15]. Its author �nds that in a rotating reference frame a charged particle responds to
the electromagnetic �eld according to the following equation of motion:

mea = e (E′ + v ×B′)

where:

E′ = E +
me

e
ω × (ω × r)

B′ = B +
2me

e
ω

In the above expressions ω denotes the angular speed of rotation at radial distance r,
while E and B denote the electric and magnetic �elds in the laboratory frame.

The extra terms of the electric and magnetic �eld formulas correspond to the usual
centrifugal and Coriolis forces, associated with motion in a rotating frame. The super-
conducting Meissner e�ect then ensures that the e�ective B′ �eld is zero. This B′ = 0
condition of the rotating frame directly leads to the following result in the laboratory
frame:

(2.3.1) B = −2me

e
ω

Equation 2.3.1 is known as the London moment formula. To verify the correctness of
the above formulas, let us consider an experimental evidence for the B′ = 2m

e
ω pseudo-

�eld. The authors of [16] measured the 13C precession frequency in materials rotated
at various angular frequencies. The nuclear precession frequency is directly proportional
to the perceived magnetic �eld; this experiment thus measures the magnetic �eld that
a particle perceives in a rotating reference frame. As can be seen in �gure 2.3.2, the
outcome of this experiment con�rms the calculations of reference [15].

Our derivation of the B = −2me

e
ω magnetic �eld in the interior of rotating super-

conductors resolves the long-standing puzzle of why this formula does not depend on the
superconducting electron density and why it does not depend on the length of the rotating
cylinder either. Having clari�ed that the magnetic �eld of rotating superconductors arises
from the same Meissner e�ect that is responsible for superconductors' diamagnetism in
the laboratory frame, what remains is to understand the Meissner current's microscopic
structure.

2.4. The microscopic structure of Meissner �ows

We showed that the London equations describe an energy-minimizing equilibrium
solution within the superconductor's surface region. The Meissner �ow of superconducting
electrons, which causes superconductors' perfect diamagnetism, carries kinetic energy.
The aim of this section is to understand the microscopic structure of Meissner �ows, i.e.
to identify the corresponding quantum mechanical state.
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Figure 2.3.2. A direct evidence of the B′ = 2m
e
ω pseudo-�eld, measured

via the 13C precession frequency. Reproduced from [16].

Third counter-evidence to the �free-�owing electron pairs� based supercon-

ductivity models: Up to now, Meissner �ows were modeled as zero-resistance perimet-
ric �ows along the superconductor's surface. However, a perimetric Meissner �ow model
leads to physical paradoxes. To see this, let us take the example of a round shaped su-
perconductor illustrated in �gure 2.2.2. The presumed circular �ow of superconducting
electrons requires their acceleration towards the center. Such electron acceleration implies
a continuous radiation of electromagnetic energy, even if superconducting electrons were
free-�owing, and this would eventually stop the Meissner �ows. Experiments however
indicate that superconducting Meissner �ows do not stop even after several years.

Since superconducting Meissner �ows do not radiate, superconductors' diamagnetism
must be generated by microscopic circular �ows; these �ows correspond to some quantum
mechanical ground state which can not loose kinetic energy. Figure 2.4.1 illustrates this
microscopic Meissner �ow structure. In the following, we calculate the radius of such
Meissner �ow vortexes.

Figure 2.4.1. An illustration of vortexes that comprise the Meissner �ow.
The externally applied magnetic �eld is represented by the arrow.

One may ask why �gure 2.4.1 does not apply to ordinary metals. In ordinary metals,
the incoherent Fermi sea wavefunctions comprise standing wave modes; these standing
waves do not have any degree of freedom for a microscopic oscillation shown in �gure
2.4.1.



2.4. THE MICROSCOPIC STRUCTURE OF MEISSNER FLOWS 35

As discussed at the end of section 1.6, coherent electron states are occupied by a large
number of electrons, and their inter-electron distances may vary while maintaining their
coherent state. This opens up a new degree of freedom for microscopic oscillations: the
density of coherent electrons can �uctuate around positively charged nuclei. A microscopic
circular �ow can be modeled as an oscillation in the x and y directions, with π

2
phase

between them. Electrons' oscillation around �xed positive charges is a so-called Langmuir
oscillation, and its angular frequency ωL is derived as follows. Suppose that the density of
superconducting electrons has a variation δns from the mean, and the average �ow speed
of these electrons is v. The continuity condition along the x direction becomes:

(2.4.1)
∂ (δns)

∂t
= −ns

∂v

∂x

Taking the time di�erential of the above equation, we obtain:

(2.4.2)
∂2 (δns)

∂t2
= −ns

∂

∂t

∂v

∂x
= −ns

∂

∂x

∂v

∂t

The electron density variation δns generates an electric �eld E, according to Poisson's
equation:

(2.4.3)
∂E

∂x
= − e

ε0
δns

The generated E �eld changes the momentum of superconducting electrons:

(2.4.4) meff
∂v

∂t
= −eE

where meff is the e�ective electron mass. Substituting equations 2.4.3-2.4.4 into 2.4.2,
we obtain a wave equation for δns:

(2.4.5)
∂2 (δns)

∂t2
=

ens
meff

∂E

∂x
= − e2ns

ε0meff

δns

This wave equation is solved by the oscillatory motion of superconducting electrons
at the following angular frequency:

ωL =

√
e2ns
ε0meff

An analogous analysis for the y direction yields the same frequency. This angular
frequency ωL is the natural oscillation frequency of superconducting electrons. We notice
that ωL can be expressed in terms of the London penetration depth parameter, that is
given by equation 2.2.9:

(2.4.6) ωL =
√
c2

√
ns
µ0e2

meff

=
c

λL

This remarkable relationship demonstrates that superconducting electrons' kinetic en-
ergy density, which was denoted as ϱk in section 2.2, corresponds to their Langmuir os-
cillation.
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These oscillations in the x and y directions result in a vortex motion of superconducting
electrons, which generates their diamagnetic response. Since this vortex is in a quantum
mechanical ground state, each involved electrons' angular momentum is quantized to ℏ:

(2.4.7) meffr⟲ (r⟲ωL) = ℏ

where r⟲ is the Meissner vortex radius illustrated in �gure 2.4.1. Such angular momentum
quantization is essentially a continuity condition on superconducting electrons' wavefunc-
tion along the vortex circle. I.e. the ℏ angular momentum condition corresponds to a
non-radiating ground state. We can now solve for r⟲:

(2.4.8) r⟲ =

√
ℏ

meffωL
=

√
ℏλL
meffc

Using the above result, one may evaluate r⟲ for various superconducting materials.
Since λL grows with increasing temperature, rM also grows with increasing temperature.

Lead material has λL (0)=52 nm, and taking meff = 1.9me yields r⟲=0.1 nm at low
temperatures. The Y Ba2Cu3O6.95 material, which is a representative high-temperature
superconductor, has λL (0)=140 nm and meff ≈ 2.2me, which yields r⟲=0.16 nm at
low temperatures. At low temperatures, the 2r⟲ diameter has a similar size to the unit
cell dimension of these materials. These examples demonstrate that at T → 0 a Meissner
vortex diameter is similar to the unit cell size. This makes sense because these microscopic
Langmuir oscillations are centered around the positively charged Pb nuclei in lead, and
around the positively charged Cu nuclei in Y Ba2Cu3O6.95.

Taking an example with larger λL (0) value, K3C60 has λL (0)=480 nm and meff =
2.4me values. Applying these values to equation 2.4.8 we obtain r⟲=0.28 nm at low
temperatures.

The above-calculated low-temperature r⟲values grow larger with increasing tempera-
tures, as de�ned by the equation 2.4.8. When the temperature is raised towards Tc, the
r⟲ values grow into the nanometer range.

2.5. Conclusions

We explored the physical origin of superconductors' perfect diamagnetism. The Meiss-
ner e�ect is generated by circular oscillations of Bose-Einstein condensed electrons around
positively charged lattice sites, with∼0.1 nm mean radius at low temperatures. Such oscil-
lations are a quantum mechanical version of Langmuir oscillations, and they arise because
their presence minimizes the total energy density. We showed that these oscillations are
non-radiating because they correspond to a quantum mechanical ground state. We demon-
strated that rotating superconductors generate magnetic �eld through the same physical
process, as it minimizes the total energy density in the rotating reference frame. A review
of related experimental data demonstrates that the Meissner e�ect is incompatible with
�free-�owing electron pairs� based models, which invalidates preceding superconductivity
theories. For the �rst time, we worked out a precise derivation of the London equation.
We also showed how the diamagnetic Meissner e�ect enables the density measurement of
superconducting electrons.

Acknowledgements: The authors thank Jan von Pfaler for his help with the London
equation's mathematical derivation.
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Appendix: a useful vector �eld identity

Let F ,G be vector �elds, and let Ω be a volume region in space. Let σ denote the
surface of Ω. The �eld G will serve as �variation �eld�, and therefore we require it to
vanish on the surface of Ω: i.e. G |σ= 0. We start from the following well-known vector
�eld identity:

∇ · (F ×G) = (∇× F ) ·G− F (∇×G)

We integrate the above equation over Ω:
ˆ

Ω

∇ · (F ×G) dV =

ˆ

Ω

(∇× F ) ·G dV −
ˆ

Ω

F (∇×G) dV

Upon rearranging terms, we get:

(2.5.1)

ˆ

Ω

F (∇×G) dV =

ˆ

Ω

(∇× F ) ·G dV −
ˆ

Ω

∇ · (F ×G) dV

We evaluate the last term of the above equation by changing from volume integration
to bounding surface integration:

ˆ

Ω

∇ · (F ×G) dV =

ˆ

σ

F ×G dA = 0

The above equation evaluates to zero because G vanishes on the surface of Ω. There-
fore, equation 2.5.1 simpli�es to:

(2.5.2)

ˆ

Ω

F (∇×G) dV =

ˆ

Ω

(∇× F ) ·G dV
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CHAPTER 3

The thermodynamics of electrons' Bose-Einstein condensation
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Abstract. Bose-Einstein condensation is an intensely studied quantum phenomenon
that emerges at low temperatures. While preceding Bose-Einstein condensation mod-
els do not consider what statistics applies above the condensation temperature, we show
that neglecting this question leads to inconsistencies. A mathematically rigorous calcula-
tion of Bose-Einstein condensation temperature requires evaluating the thermodynamic
balance between coherent and incoherent particle populations. The �rst part of this
work develops such an improved Bose-Einstein condensation temperature calculation,
for both three-dimensional and two-dimensional scenarios. The progress over preceding
Bose-Einstein condensation models is particularly apparent in the two-dimensional case,
where preceding models run into mathematical divergence.

In the second part of this chapter, we validate our mathematical model against ex-
perimental superconductivity data. A remarkable match is found between experimental
data and the calculated Bose-Einstein condensation temperature formulas. Being able to
calculate electrons' Bose-Einstein condensation dynamics therefore facilitates a rational
search for higher-temperature superconductors.

3.1. Introduction

The theory of Bose-Einstein statistics was formulated nearly 100 years ago, and
the corresponding Bose-Einstein condensation temperature formula was calculated a few
decades later for the isotropic gas scenario [3]. Experimentally, the �rst undisputed ob-
servation of Bose-Einstein condensation was reported for ultracold dilute gases in 1995
[1].

On the other hand, superconductivity has been also intensely studied during the past
100 years. Since electric resistivity originates from scattering events, such as electron
scattering on crystal defect sites or electron-electron scattering, superconducting electrons
must have the ability to pass through the superconducting material without any scattering
events. The simplest way to achieve such an e�ect is to add and remove those conduction
band electrons whose wavefunction has macroscopically large wavelength. Such a large
wavelength no longer scatters because of the many orders of magnitude mismatch with
respect to the inter-particle distances. This simplest model naturally suggests some sort
of Bose-Einstein condensation, facilitating a variable particle number in the lowest-energy
delocalized states. But despite intense e�orts, there is no generally accepted theory yet
that explains low- and high-temperature superconductivity phenomena in terms of Bose-
Einstein condensation.

A main shortcoming of preceding Bose-Einstein condensation models is that they apply
Bose-Einstein statistics only below the condensation temperature, while leaving open the
question of applicable particle statistics above the condensation temperature. Taking any
Bose-Einstein condensing particle population, these particles occupy quantum mechanical
states also above the condensation temperature, and one must then clarify: how many
particles per state are allowed above the condensation temperature, and what principle
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determines whether the incoherent particle population condenses partly or fully upon
crossing below the condensation temperature? A meaningful discussion of these questions
has been hindered by a historic ambiguity around particle statistics rules. Against this
backdrop, the results of chapter 1 represent a major progress: our results clarify the
exclusion principle's physical origin, and show that the applicability of Fermi-Dirac versus
Bose-Einstein statistics is thermodynamically determined and therefore not any inherent
property of a given particle.

Figure 3.1.1. The proposed thermodynamic model: equilibrium transi-
tions among the three particle populations are illustrated by the block ar-
rows. The vertical arrows illustrate spin correlations.

Based on chapter 1 results, let us consider a particle dynamics model where the inco-
herent state is governed by Fermi-Dirac statistics, and the coherent state is governed by
Bose-Einstein statistics. A thermodynamic balance is maintained between the coherent
and incoherent particle populations. Within the incoherent Fermi-Dirac state, any quan-
tum mechanical state is occupied by a particle pair in either spin-singlet or spin-triplet
state1. Since a Bose-Einstein condensation into the same quantum mechanical state re-
quires the alignment of particle spins, the direct thermodynamic balance is maintained
between the Bose-Einstein condensed and spin-triplet paired particle populations. Fig-
ure 3.1.1 illustrates the thermodynamic balances among these three particle populations;
evaluating these balances is the basis of our methodology.

Generally, the spin-singlet state is energetically favored, and we �nd it in virtually
all materials. However, some rare materials, such as K2Cr3As3, host a spin-triplet paired
electron band [20]. When the parallel aligned spin-triplet pairs condense into a spin-
aligned Bose-Einstein condensate, the scienti�c literature refers to it as a �spin-triplet
superconductor�.

In the following, the Bose-Einstein condensation temperature is calculated according
to the above-outlined concepts. These calculations are based on well-known methods
of statistical physics. While preceding Bose-Einstein condensation calculations lead to
divergence in the two-dimensional case, our methodology is applicable to both three-
dimensional and two-dimensional scenarios, as well as the anisotropic case that lies in-
between these two topologies.

3.2. Quantum mechanical standing waves of enclosed particles

The quantum mechanical states of enclosed particles are standing waves, located in a
square potential well that is de�ned by the enclosure. The particle wavefunctions re�ect
back from the enclosure boundary. This work considers systems where the interaction

1Occasionally, a quantum mechanical state can be also occupied by a single unpaired particle, but
that is very rare in comparison to pair-wise occupancy.
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among particles is negligible2; quantum mechanical standing waves are then simple har-
monic waves. Examples where such a non-interacting harmonic wavefunction model ap-
plies: enclosed noble gases, or delocalized electrons within the interior of a metal. In the
delocalized electron case, their electrostatic potential is counter-balanced by the positively
charged lattice nuclei.

Figure 3.2.1. A k-space representation of delocalized electron states

Consider a cube shaped enclosure with dimensions Lx, Ly, Lz. A standing wave's
wavenumbers may take on the values illustrated in �gure 3.2.1, speci�cally:

kx = l
2π

Lx
, ky = m

2π

Ly
, kz = n

2π

Lz
,

where l,m, n = 0,±1,±2, . . ..
When the particle movement is restricted to a 2-dimensional plane, the allowed wavenum-

bers are:

kx = l
2π

Lx
, ky = m

2π

Ly
,

with l,m = 0,±1,±2, . . ..
Each gridpoint of �gure 3.2.1 represents an allowed state. In the k-space of �gure

3.2.1, there is only one state per every (2π)3

LxLyLz
volume element. Thus the k-space density

of allowed states is:

(3.2.1) ϱk =
LxLyLz

(2π)3
.

Similarly, the k-space density of 2-dimensional states is:

(3.2.2) σk =
LxLy

(2π)2
.

The kinetic energy of any given state is:

2When the interaction among particles is non-negligible, the allowed quantum mechanical states
are solutions of the Gross�Pitaevskii equation. This equation incorporates interactions among particles
through a pseudopotential, and its non-linearity arises from these interactions. The density of states
formula then becomes more complex than equations 3.2.8 and 3.2.9. The rest of the article applies
in the same way, but the appropriate density of states formulation must be used. In the context of
superconductivity, the Gross�Pitaevskii equation has been shown to be relevant for sub-micron sized
mesoscopic superconductors, whose size is comparable to the superconducting coherence length [2].
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(3.2.3) E =
1

2
mv2 =

p2

2m
=

(ℏk)2

2m
,

where k2 = k2x+k
2
y+k

2
z for the 3-dimensional case and k

2 = k2x+k
2
y for the 2-dimensional

case.
We want to determine the number of delocalized particle states that are within a kF

threshold wavenumber. In the k-space representation, these states occupy a Fermi-sphere,
with radius kF . The number of delocalized states within kF radius is:

(3.2.4) N3d = ϱk
4π

3
k3F .

We denote the total density of particles by n3d =
N3d

V
. The relationship between the

particle density and kF is:

(3.2.5) n3d =
k3F
6π2

.

In the case of a 2-dimensional plane, delocalized particles occupy a Fermi-disc, with
radius kF . We use the η2d symbol to refer to the areal density, as it is dimensionally
di�erent from the volumetric density. The relationship between η2d =

N2d

A
and kF becomes:

(3.2.6) η2d =
k2F
4π

.

The energy of particles at kF is called the Fermi energy:

(3.2.7) EF =
(ℏkF )2

2m
.

Now we calculate the density of energy eigenstates as a function of particle energy.

Using equation 3.2.3, we get k =
√
2mE
ℏ and the following expression for d3d (E):

(3.2.8) d3d (E) ≡
dn3d

dE
=
dn3d

dk

dk

dE
=

k2

2π2

√
2m

ℏ
1

2
√
E

=

=

(√
m

ℏ

)3
1√
2π2

√
E .

The density of three-dimensional particle states grows with the square root of particle
energy.

An analogous calculation of d2d (E) yields:

(3.2.9) d2d (E) ≡
dη2d
dE

=
dη2d
dk

dk

dE
=

k

2π

√
2m

ℏ
1

2
√
E

=

=
m

ℏ2
1

2π
.

The above equation means that the density of particle states is constant in the two-
dimensional case.
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3.3. The entropy of a delocalized con�guration

Suppose that we have N indistinguishable particles that are arranged amongM avail-
able states. In this context, indistinguishability means that the exchange of any two
particles does not impact any thermodynamic property, such as the number of available
states or the energy levels of these states. How many con�gurations are available to dis-
tribute them? Distributing intoM states is analogous to putting each particle into one of
M boxes in a row; these boxes haveM−1 walls between them. Essentially, we have a row
of N particles and M − 1 walls, and we want to count their possible con�gurations. We
count up to N +M − 1 elements, and each consecutive element can be either a particle
type or a wall type.

The number of con�gurations is:

(3.3.1) W =
(N +M − 1)!

N ! · (M − 1)!
.

The entropy S of a particle con�guration is de�ned as:

(3.3.2) S = kb lnW ,

where kbis the Boltzmann constant, and W is the number of available con�gurations.
According to equation 3.2.3, an electron's energy depends on the absolute value of its

wavenumber k. However, each k state can be realized through various combinations of
kx, ky, kz wavenumbers: these possibilities are denoted by the Mk available states.

Let Nk be the number of particles with wavenumber k. In terms of thermodynamics,
all Nk particles are indistinguishable: each one has the exact same kinetic energy. The
number of con�gurations for all particles is given by:

(3.3.3) W =
∏
k

(Nk +Mk − 1)!

Nk! · (Mk − 1)!
.

We use Stirling's approximation for calculating the logarithms:

lnn! ≈ n lnn− n ,

which converges for large n. The total entropy then becomes:

(3.3.4) S = kb lnW = kb
∑
k

[(Nk +Mk) ln (Nk +Mk)−Nk lnNk −Mk lnMk] ,

where we used the Nk+Mk−1 ≈ Nk+Mk approximation. Di�erentiating S with respect
to a selected Nk variable yields:

∂S

∂Nk

= kb [ln (Nk +Mk) + 1− lnNk − 1] .
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The total kinetic energy is:

(3.3.5) U =
∑
k

EkNk ,

where Ek is calculated from equation 3.2.3, and U remains constant for a closed system.
In thermal equilibrium, the particles distribute themselves such that the total entropy is
maximized. For a given number of particles, any variation around thermal equilibrium
keeps the total number of particles constant:

(3.3.6) N =
∑
k

Nk .

Therefore, in order to �nd the thermodynamically favored equilibrium con�guration,
we must maximize S under the constraints of �xed Uand N . This implies for each Nk

the following condition:

(3.3.7)
∂S

∂Nk

− kbβ
∂U

∂Nk

+ kbβ · µ ∂N
∂Nk

= 0 ,

where β and µ have been de�ned as optimization constants. For an adiabatic process,
the above di�erential becomes ∂U

∂Nk
= µ ∂N

∂Nk
, which implies that µ is in fact the chemical

potential. Since a potential is de�ned with respect to a reference, to calculate µ we must
know where the new particles are added from. Evaluating the above di�erentials yields:

(3.3.8) ln (Nk +Mk)− lnNk − βEk + βµ = 0 .

We solve the above equation for Nk:

(3.3.9) Nk =
1

eβ(Ek−µ) − 1
Mk .

The average occupancy number of states with energy Ek is:

(3.3.10) f (Ek) =
Nk

Mk

=
(
eβ(Ek−µ) − 1

)−1
.

The above formula is known as the Bose-Einstein distribution. We are interested in
�nding the thermodynamic conditions that allow coherent particles' Bose-Einstein con-
densation, with the distribution given by equation 3.3.10.

We now evaluate the β parameter. When the number of particles is allowed to vary,
the change in entropy is calculated using equation 3.3.7:

(3.3.11) dS =
∑
k

∂S

∂Nk

dNk

= kbβ
∑
k

(
∂U

∂Nk

− µ
∂N

∂Nk

)
dNk

= kbβ (dU − µ · dN) .

At the same time, dU is also given by the �rst law of thermodynamics:

dU = T · dS − P · dV + µ · dN ,
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where T is temperature, P is pressure, and µ is the chemical potential. Since there is
no volume change within a �xed enclosure, the above equation leads to the following
formulation of the entropy change:

(3.3.12) dS =
1

T
(dU − µ · dN) .

By comparing equations 3.3.11 and 3.3.12, we �nd that:

(3.3.13) β =
1

kbT
.

3.4. The continuum limit of large distributions

Using 3.3.10, the total number of particles is:

(3.4.1) N =
∑
k

f (Ek) =
∑
k

(
eβ(Ek−µ) − 1

)−1
.

Recalling the density of k-space elements given by equation 3.2.1, in the continuum
limit one may replace the summation by integrating over all possible wavenumbers:

N =
V

(2π)3

ˆ (
eβ(Ek−µ) − 1

)−1
d3k ,

which gives the following particle density:

n =
1

(2π)3

ˆ (
eβ(Ek−µ) − 1

)−1
d3k .

Replacing the wavenumber integration by integrating over particle energy values,
we obtain the following expression for the density of delocalized particles, for the 3-
dimensional and 2-dimensional cases respectively:

(3.4.2) n =

ˆ ∞

0

(
eβ(E−µ) − 1

)−1
d3d (E) dE ,

η =

ˆ ∞

0

(
eβ(E−µ) − 1

)−1
d2d (E) dE ,

where the d3d (E) parameter of equation 3.2.8 gives the density of particle states at a
given energy.

Let us consider the role of chemical potential µ. In our context, the Fermi-sea is the
source of electrons during a dN change in their total number. If a stable Fermi-sea and
Bose-Einstein condensate co-exist, the µ = 0 condition represents their balance3. Con-
sidering the �nite number of available particles, the density of Bose-Einstein condensed
particles can be summarized by the following two rules:

3The µ ̸= 0 condition means that energy is gained by a particle moving from the Fermi-sea to tha
Bose-Einstein condensate, or vice versa. Therefore, under the µ ̸= 0 condition, a thermodynamic balance
between a Fermi-sea and Bose-Einstein condensate would require an electrostatic potential di�erence to
counter-balance the chemical potential di�erence. Within any given material, the Fermi-sea and Bose-
Einstein condensate occupy the same region; i.e. there cannot be any electrostatic potential di�erence
between them. This leads to the conclusion that the µ = 0 condition is a pre-requisite for the co-existing
Fermi-sea and Bose-Einstein condensate being in thermodynamic balance within any given material.
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(1) If equation 3.4.2 can be solved in µ = 0 case, the spin-triplet Fermi-sea particles
�ow into the Bose-Einstein condensate till the µ = 0 condition is established; the
Fermi-sea and Bose-Einstein condensate co-exist at the given temperature.

(2) If equation 3.4.2 cannot be solved for µ = 0, all spin-triplet Fermi-sea parti-
cles �ow into the Bose-Einstein condensate when it becomes thermodynamically
favorable. A thermodynamic precondition is that the pre-condensation mean en-
ergy in the Dirac-Fermi sea must be at least as high as the mean energy of the
Bose-Einstein condensate.

If the µ = 0 condition can be ful�lled, we arrive at the following expression for the density
of particles:

(3.4.3) n =

ˆ ∞

0

(
eβE − 1

)−1
d3d (E) dE .

In the above expression, the
(
eβE − 1

)−1
term diverges at the E = 0 energy value. This

divergence expresses that having an in�nite reservoir of Fermi-sea particles pulls an in�nite
number of them into the Bose-Einstein ground state. It is exactly the dynamics that
characterizes Bose-Einstein condensates: particles are continuously condensed into the
ground state as long as there is an available supply. Despite this ground state divergence,
as we shall see below, the overall integral still converges to a �nite value.

3.5. Bose-Einstein condensation

The phase transition that we derive in this section is therefore unique in the sense that
it is driven by delocalized wavefunction interactions, and not by local interactions between
nearby particles. In the following, we calculate Bose-Einstein condensation dynamics for
three topological scenarios.

3.5.1. 3-dimensional isotropic case. This scenario is relevant for non-interacting
gases. Also, elementary metal based superconductors fall into this category, as evidenced
by their isotropic diamagnetism.

Let us re-write equation 3.4.3 in terms of the dimensionless x := βE variable:

(3.5.1) nBEC =

(√
mkbT

ℏ

)3
1√
2π2

ˆ ∞

0

e−x

1− e−x
√
x dx .

To evaluate the above integral, we use the Maclaurin series expansion of 1
1−e−x :

e−x

1− e−x
= e−x

(
1 + e−x + e−2x + . . .

)
=

∞∑
a=1

e−ax .



3.5. BOSE-EINSTEIN CONDENSATION 47

For each a value, we evaluate the integral expression by making the y := ax variable
change:

ˆ ∞

0

e−ax
√
x dx = a−

3
2

ˆ ∞

0

e−y
√
y dy = a−

3
2Γ

(
3

2

)
,

where Γ is the so-called gamma function, with Γ
(
3
2

)
=

√
π
2
. Substituting the above result

into equation 3.5.1, we obtain:

(3.5.2) nBEC =

(
mkbT

2πℏ2

) 3
2

∞∑
a=1

a−
3
2 .

In the above equation, the summation result is given by the Riemann zeta function:

∞∑
a=1

a−
3
2 = ζ

(
3

2

)
≈ 2.612 .

Equation 3.5.2 expresses the relationship between the Bose-Einstein condensed particle
density nBEC and temperature. As we obtained equation 3.5.2 for the case of µ = 0,
the temperature appearing in this equation is in fact the limiting temperature of Bose-
Einstein condensation that allows a co-existence between the Fermi-sea and Bose-Einstein
condensate particle states:

(3.5.3)

[
nBEC =

(
mkbTBEC
2πℏ2

) 3
2

ζ

(
3

2

)]
3d

,

where the nBEC density of Bose-Einstein condensed particles appears abruptly at the
phase-change temperature, i.e. nBEC=0 for T > TBEC .

Finally, we rearrange the above equation to solve for TBEC :

(3.5.4)

TBEC =
2πℏ2

mkb

(
nBEC

ζ
(
3
2

)) 2
3


3d

.

Equation 3.5.4 is an important result: it de�nes the limiting temperature of an
isotropic Bose-Einstein condensation. This equation has been known in the scienti�c
literature; it was �rst derived by Fritz London in 1938 [3], and is nowadays further ex-
plained in textbooks [4]. However, equation 3.5.4 was previously derived by assuming
the Bose-Einstein condensation of all available particles, and without investigating the
chemical potential's role. Here we see that ful�lling the µ = 0 condition means that the
Fermi-Dirac and Bose-Einstein particle populations co-exist at any T > 0 temperature.
Only in the T → 0 limit do all Fermi-Dirac particles Bose-Einstein condense.

Let us denote by nsinglet and ntriplet the density of spin-singlet and spin-triplet Fermi-
Dirac particles, evaluated just before the Bose-Einstein condensation. As it is the spin-
triplet particles that are capable of Bose-Einstein condensing, it follows that ntriplet ≥
nBEC (TBEC).

In elementary metals, nBEC (TBEC) is a tiny fraction of the total density of delocalized
electrons. Let us consider lead, as a representative elementary metal superconductor.
Based on lead crystal's 0.5 nm unit cell dimension and the +2 valence state of lead sites,
we estimate n=(0.4 nm)-3 total delocalized electron density in lead metal. Applying
Tc=7.2 K of lead metal to equation 3.5.3, we obtain that nBEC (TBEC) /n is only 0.05%.
Lead material has λL (T → 0)=52 nm magnetic �eld penetration depth and meff = 1.9me
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e�ective electron mass; we can use the 1
λL

=
√
ns

µ0e2

meff
London equation, which was

derived in chapter 2, to �nd the ns density of superconducting electrons at T → 0.
Carrying out this calculation yields ns (T → 0)=(0.37 nm)-3 superconducting electron
density. This data demonstrates that nBEC (TBEC) ≪ n and nBEC (T → 0) ≈ n in
elementary metals. Determining nBEC (TBEC) thus becomes the basis for estimating TBEC
in isotropic materials.

In hydrated or deuterated metals, the nBEC (TBEC) ratio can reach an order of mag-
nitude higher value than in elementary metals, even at ambient pressure. The authors of
[5] achieved 60 K ambient pressure superconductivity in rapidly cooled deuterated palla-
dium (PdD); this is the highest superconducting temperature so far achieved in a binary
isotropic material. The electronic structure of hydrated palladium has been extensively
studied, and these studies conclude that the palladium-hydrogen bond has mainly cova-
lent character. The +2 valence of metallic palladium therefore turns into approximately
+1 valence in PdD. Based on PdD crystal's 0.414 nm unit cell dimension and +1 valence,
we estimate n=(0.414 nm)-3 total delocalized electron density. Applying Tc=60 K of PdD
metal to equation 3.5.3, we obtain that nBEC (TBEC) /n is 0.5% in PdD. The di�erent
electron excitation process in elementary versus hydrated metals is illustrated by their
opposite nuclear mass dependence: heavier lead isotopes yield lower Tc, while heavier
hydrogen isotopes yield higher Tc in hydrated palladium. Speci�cally the authors of [5]
achieved 60 K superconductivity with PdD, but only 54 K superconductivity with PdH.
The involved catalytic processes shall be examined in chapter 5.

The Buckminsterfullerene based Rb3C60 material is an example of even higher
nBEC (TBEC) /n fraction. It comprises 1.45 nm spacing between the +1 valence Rb sites,
and thus we estimate n=(1.45 nm)-3 total delocalized electron density. Applying Tc=29 K
of Rb3C60 metal to equation 3.5.3, we obtain that nBEC (TBEC) /n is 3% in Rb3C60. Table
1 summarizes the two orders of magnitude nBEC (TBEC) /n variation across these reviewed
materials. Such large variation in the nBEC (TBEC) /n ratio demonstrates the existence
of catalytic processes that determine the rate of spin-triplet pair production within the
Fermi-Dirac sea, or even the production of unpaired electrons in the vicinity of the Fermi
energy level.

Superconductor TBEC nBEC (TBEC) /n

Pb 7.2 K 0.05%
PdD (slowly cooled) 8.2 K 0.07%
PdD (rapidly cooled) 60 K 0.5%

Rb3C60 29 K 3%
Table 1. The fraction of delocalized electrons that Bose-Einstein condense
at isotropic materials' superconducting transition temperature.

We derived equation 3.5.4 for the T = TBEC case, and the next step is to understand

what happens in the T < TBEC case. We discussed in section 3.4 that the
(
eβE − 1

)−1
term

diverges at the E = 0 energy value, which means that a signi�cant fraction of electrons
condenses into the quantum mechanical ground state. Therefore, in the T < TBEC case
we must treat separately those N0 electrons that occupy the E0 ground state.
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We therefore formulate equation 3.4.1 as follows, keeping in mind the µ = 0 condition:

(3.5.5) N = N0 +
∑
k ̸=0

(
eβEk − 1

)−1
.

In the continuum limit, the corresponding electron density becomes:

(3.5.6)[
nBEC = n0 +

(√
mkbT

ℏ

)3
1√
2π2

ˆ ∞

0

e−x

1− e−x
√
x dx = n0 +

(
mkbT

2πℏ2

) 3
2

ζ

(
3

2

)]
3d

.

Dividing by nBEC and substituting equation 3.5.4, we obtain:

(3.5.7)

[
n0

nBEC
= 1−

(
T

TBEC

) 3
2

]
3d

.

Figure 3.5.1. The n0

nBEC
ratio of Bose-Einstein condensed electrons that

occupy the ground state in isotropic electron condensates, as a function of
T

TBEC
.

Equation 3.5.7 de�nes the ratio of Bose-Einstein condensed electrons that occupy
the quantum mechanical ground state, and it is graphically illustrated in �gure 3.5.1.
It seen that nearly all Bose-Einstein condensed electrons occupy the ground state at
T → 0. The percentage Bose-Einstein condensed electrons that occupy the ground state
gradually goes to zero in the T → TBEC temperature limit. This result explains the
experimental observation of λL (T → Tc) → ∞ in isotropic superconducting materials;

the 1
λL

=
√
ns

µ0e2

meff
London equation tells us that the in�nite λL value corresponds to zero

density of electrons in the superconducting ground state at T → Tc temperature, exactly
as predicted by equation 3.5.7.
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3.5.2. Stacked 2-dimensional case. In this section, we describe Bose-Einstein con-
densation for the purely 2-dimensional case. Let us �rstly calculate the 2-dimensional case
for µ = 0, starting from the 2-dimensional analogue of equation 3.4.3:

(3.5.8) ηBEC =

ˆ ∞

0

(
eβE − 1

)−1
d2d (E) dE ,

where the d2d (E) parameter of equation 3.2.9 gives the density of electron states at a
given energy.

As before, we re-write this equation in terms of the dimensionless x := βE variable:

(3.5.9) ηBEC =
m

2πℏ2
kbT

ˆ ∞

0

e−x

1− e−x
dx .

To evaluate the above integral, we again use the e−x

1−e−x =
∑∞

a=1 e
−ax identity. For each

a value, the integral expression yields:

ˆ ∞

0

e−ax dx =
1

a
.

The integral expression of equation 3.5.9 thereby evaluates to:

∞∑
a=1

a−1 = ζ (1) .

The above summation diverges as the Riemann zeta function ζ (x) grows to in�nity
in the x → 1 limit. The divergence of ζ (1) means that the density of Bose-Einstein
condensate grows as long as there is a supply of electrons, i.e. there is no thermody-
namically favorable co-existence between a 2-dimensional Bose-Einstein condensate and
Fermi-Dirac sea. The 2-dimensional case is therefore simpler than the 3-dimensional
one: if Bose-Einstein condensation becomes thermodynamically favored, all delocalized
electrons Bose-Einstein condense via the mediation of spin-triplet electrons, implying
ηBEC = η already at the superconducting transition temperature.

We calculate TBEC from the thermodynamic precondition that the pre-condensation
mean energy in the Dirac-Fermi sea must be at least as high as the mean energy of
the Bose-Einstein condensate. At any given temperature, the Bose-Einstein condensate's
mean energy is Emean = kbT .

There are two electrons per energy eigenstate in the Dirac-Fermi sea. Recalling from
equation 3.2.9 that the energy eigenstates are evenly spaced in a 2-dimensional metal, the
mean energy of the Dirac-Fermi sea is 1

2
of its Fermi energy level. It follows that ηBEC = η

is given by the following formula:

(3.5.10) η =

2Emeanw

0

2d2d dE = 2d2d · (2Emean) =
2m

πℏ2
kbTBEC .

We rearrange the above equation to solve for TBEC :

(3.5.11) TBEC =
πℏ2

2mkb
η .
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Figure 3.5.2. The TBEC ∼ η relationship in nearly 2-dimensional super-
�uids, reproduced from [6]

Equation 3.5.11 implies a linear TBEC ∼ η relationship. Regarding experiments, nearly
2-dimensional Bose-Einstein condensation has been studied in the context of thin super-
�uid �lms [6]. As shown in �gure 3.5.2, the anticipated TBEC ∼ η approximate relation-
ship is indeed experimentally observed.

While a purely 2-dimensional case may be a mathematical abstraction, strongly anisotropic
materials approach this limit, and equation 3.5.11 becomes a good approximation for
strongly anisotropic materials.

3.5.3. Generalized anisotropic case. Next, we consider a generalized case in-
between the 3-dimensional isotropic and the stacked 2-dimensional topologies. In the
context of superconductors, the anisotropic topology means that conduction band elec-
trons have 3-dimensional delocalization, but their superconducting diamagnetism has sig-
ni�cant anisotropy. Practically all high-temperature superconductors falls into this cat-
egory. We model this class of materials by interpolating between the 3-dimensional and
2-dimensional topologies.

When the particle states are not purely 2-dimensional, a solution for µ=0 shall exist.
Revisiting equation 3.5.9, we �rstly carry on with the 2-dimensional calculation, using
the symbolic ζ (1) notation.

Let dil denote the inter-layer spacing between the crystal planes that more strongly
conduct electrons. In order to compare 3-dimensional versus 2-dimensional results using
dimensionally matching equations, we shall use the nBEC := ηd−1

il density notation for the
2-dimensional computation. Using equation 3.5.9, we can now express the Bose-Einstein
condensed electron density in terms of its limiting temperature:

(3.5.12)

[
nBEC = ζ (1)

mkbTBEC
2πℏ2dil

]
2d

.
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We rearrange the above equation to solve for TBEC :

(3.5.13)

[
TBEC =

2πℏ2

mkb
dil
nBEC
ζ (1)

]
2d

.

For the generalized anisotropic case, the dimensionality of electron conduction is some-
where between 2-dimensional and 3-dimensional. By comparing equation 3.5.13 against
3.5.4, it is possible to formulate the generalized TBEC formula, and there is only one
dimensionally correct way of doing it4:

(3.5.14)

[
TBEC =

2πℏ2

mkb
(dil)

(3D−2)

(
nBEC
ζ (D−1)

)D]
anisotropic

,

where D is the dimensionality parameter. TBEC is well-de�ned in the 2/3 ≥ D > 2/2
range, and isotropic materials have the D = 2/3 value. Experimentally, the value of D
can be inferred via London penetration depth measurements along the various axes of the
crystal structure. As before, it follows from the µ = 0 condition that the Fermi-Dirac and
Bose-Einstein condensed phases co-exist at any T > 0 temperature.

It is possible to calculate the n0

nBEC
ratio of ground state occupying electrons; the

calculation procedure is analogous to how equation 3.5.7 was obtained in the isotropic
case. For the nearly two-dimensional case, where D → 2/2, we obtain the following linear
n0

nBEC
ratio:

(3.5.15)

[
n0

nBEC
= 1− T

TBEC

]
2d

Therefore, even in the two-dimensional limit, the percentage Bose-Einstein condensed
electrons that occupy the ground state gradually goes to zero in the T → TBEC tem-
perature limit. This result explains the experimental observation of λL (T → Tc) → ∞
in all superconducting materials. The isotropic case is represented by elementary metals
and the n0

nBEC
ratio is given by equation 3.5.7, while the nearly two-dimensional case is

represented by cuprate type superconductors and the n0

nBEC
ratio is given by equation

3.5.15.

4Speci�cally, the
(

nBEC

ζ(D−1)

)D
term is the generalization of the 3-dimensional

(
nBEC

ζ( 3
2 )

) 2
3

and 2-

dimensional

(
nBEC

ζ( 2
2 )

) 2
2

terms. The 2πℏ2

mkb
factor remains the same for any topology. In order for the

formula to yield temperature and to match with the generalized particle density de�nition, the d3D−2
il

term must be present as well. I.e. the dimensionally generalized particle density is nD
BEC · d3D−2

il , where
nBEC is the 3-dimensional particle density and dil is the inter-layer distance of the crystal structure.
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3.6. Experimental validation

3.6.1. Bose-Einstein condensation from spin-triplet paired electron state.

K2Cr3As3 is an exemplary material that is thought to contain an electron band comprising
delocalized electrons with parallel spin correlation [20]. Such electron pairs are also being
referred to as a �spin-triplet� state.

Figure 3.6.1. The n0

nBEC
ratio as a function of T

TBEC
in K2Cr3As3. The red

curve is the experimental data from [19], and the blue curve corresponds
to equation 3.5.7.

The existence of a spin-triplet comprising Fermi-Dirac sea contradicts the historically
formulated electron statistics postulates. On the other hand, a spin-triplet comprising
Fermi-Dirac sea is perfectly compatible with the results of chapter 1, which proves the
pair-wise Pauli exclusion limit of incoherent electron states, regardless of their parallel or
anti-parallel spin correlation.

Electronic structure studies on K2Cr3As3 show that it comprises three distinct delo-
calized electron bands: two are nearly 1-dimensional, and one is nearly isotropic [19, 20].
Superconductivity is associated with the phase transition of the isotropic electron band,
and this nearly isotropic band is thought to host spin-triplet electron pairs.

Despite its relatively low superconducting temperature of Tc=6.2 K, K2Cr3As3 main-
tains its superconducting state even under >20 T magnetic �eld at T → 0 temperature.
While lead metal has a similar superconducting temperature of Tc=7.2 K, lead looses
its superconductivity already under 0.08 T magnetic �eld at the same T → 0 temper-
ature. Because of these properties, K2Cr3As3 is being classi�ed as an �unconventional�
superconductor.

Considering that the superconductivity-related topology is nearly isotropic in K2Cr3As3,
we compare its experimental data against the equations of section 3.5.1. Its supercon-
ducting electron density can be characterized by magnetic �eld penetration depth mea-
surements. As shown in �gure 3.6.1, the experimental superconducting electron density
data closely matches equation 3.5.7.

The matching data of �gure 3.6.1 in fact requires that nBEC remains constant across
the charted temperature range. This implies that all (or most) spin-triplet state electrons
Bose-Einstein condense at the Tc = TBEC transition temperature, which validates the
thermodynamic equilibrium model sketched in �gure 3.1.1.
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Figure 3.6.2. The signature of un-paired electron condensation is the
Knight shift value drop in Y Ba2Cu3O7−δ, upon transition into supercon-
ducting state. Left: the Knight shift versus temperature, reproduced
from [10]. The square symbols represent optimally doped Y Ba2Cu3O6.9

with Tc=90 K, the round symbols represent under-doped Y Ba2Cu3O6.7.
Right: the Knight shift versus magnetic �eld strength for under-doped
Y Ba2Cu3O6.7, reproduced from [11]. The measurements were made at
the various indicated temperatures, the Knight shift drop starts at Bc for
the given temperature.

Figure 3.6.3. The signature of unpaired electron condensation is the
Knight shift value drop in Ba0.5Sr0.5Fe2 (As0.6P0.4)2, upon transition into
superconducting state. The Knight shift was measured by 31P NMR
method. Reproduced from [12].

3.6.2. The transition of unpaired Fermi-Dirac electrons into the Bose-Einstein

condensate. Although unpaired electron states are rare, the density of unpaired delo-
calized electrons can be measured via the NMR Knight shift which they produce. High-
temperature superconductors' Knight shift value starts dropping exactly below their su-
perconducting transition point. This phenomenon is illustrated in �gure 3.6.2, taking
the example of cuprate-type Y Ba2Cu3O7−δ superconductor. In the case of optimally
doped Y Ba2Cu3O6.9, its Knight shift remains constant as the temperature is lowered
towards Tc, and then starts sharply decreasing in the T < Tc region. In the case of
under-doped Y Ba2Cu3O6.7, this phenomenon is much weaker, but still observable un-
der variable applied magnetic �eld: the Knight shift remains constant as the magnetic
�eld strength is lowered towards the critical magnetic �eld strength Bc, and then starts
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decreasing in the B < Bc region. Analogous Knight shift charts are observed for other
high temperature superconductors as well: �gure 3.6.3 shows the example of iron-based
Ba0.5Sr0.5Fe2 (As0.6P0.4)2 superconductor. This experimental phenomenon demonstrates
that unpaired delocalized electrons are gradually depleted when the superconducting
phase is present, as they condense one by one into the Bose-Einstein condensate. In
other words, individual electrons may transition to and from the superconducting elec-
tron phase.

3.6.3. Isotropic superconductors. Equation 3.5.4 implies Tc ∼ n
2
3
BEC scaling for

a given isotropic material, with all else being equal. This isotropic superconductor case
is nicely illustrated by boron-doped diamond: it is a binary structured superconductor,
where the density of conduction band electrons is proportional to the boron doping density.
As illustrated in �gure 3.6.4, the Tc of boron-doped diamond follows the anticipated

Tc ∼ n
2
3
s relationship.

Figure 3.6.4. The Tc (K) of boron-doped diamond, as a function of boron
concentration. The data is taken from [7], disc sizes correspond to the error

bars. The solid line represents ∼ n
2
3 scaling. The dashed line indicates

metal-insulator transition.

3.6.4. Superconductors comprising stacked 2-dimensional topology.

3.6.4.1. Optimally doped superconductors. Nearly all high-temperature superconduc-
tors comprise stacked conducting planes, and their delocalized electron concentration is
de�ned by the doping concentration. Their nearly 2-dimensional anisotropy can be char-
acterized by the λL (T → 0) magnetic �eld penetration depth's anisotropy. We �rstly
consider �optimally doped� superconductors, where Tc is maximized. In optimally doped
cuprate materials, which represent the most studied class of high-temperature supercon-
ductors, λL (T → 0) is 10-30 times larger in perpendicular direction to the CuO2 planes
than in parallel direction with respect to the CuO2 planes. These cuprate materials can
be therefore characterized as strongly 2-dimensional materials, in which superconducting
electrons move mainly along the CuO2 planes. We thus anticipate TBEC to be given by
equation 3.5.11.

In a remarkable work, the authors of [8] demonstrate a rather precise Tc = κx−2N
2
3

relationship for high-temperature superconductors, where x is the spacing between the
doping sites that donate delocalized electrons, N is the number of CuO2 planes within
the unit cell, and κ = 6.96 · 1016 m2K is a phenomenologically determined constant.
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Figure 3.6.5. The Roeser-Huber relationship in iron-based and cuprate-
based high-temperature superconductors, reproduced from [6]

This relationship is known as the Roeser-Huber formula, and it is illustrated in �gure
3.6.5. Despite the Roeser-Huber formula's accuracy, so far it gained little attention among
superconductivity researchers because it does not match with preceding superconductivity
theories.

Comparing the Roeser-Huber formula against equation 3.5.11, we recognize that x−2 ≡
η and πℏ2

2mkb
≈ 2κ. In most cuprate superconductors one �nds N=3, and occasionally

N=2 or N=4. The dimensionless N
2
3 parameter thus usually evaluates to N

2
3 ≈2. I.e.

πℏ2
2mkb

≈ N
2
3κ, and it is clearly seen that the Roeser-Huber formula is in fact equation 3.5.11.

The match between equation 3.5.11 and experimental data is therefore remarkable, and
validates our theory.

3.6.4.2. Underdoped superconductors. The under-doped regime of high-temperature
superconductors is characterized by a gradually growing delocalized electron concentra-
tion, as a function of the doping parameter. The concentration of delocalized electrons is
approximately zero near the insulator-metal transition point, and gradually grows with
increasing doping levels. Equation 3.5.11 indicates that the concentration of delocalized
electrons must be the TBEC limiting factor in this regime.

Around 1990, Y. Uemura found the λ−2
L (T → 0) ∼ Tc relationship, which universally

holds for the underdoped regime of cuprate superconductors, and has been very unex-
pected by superconductivity theories at the time of its discovery. This relation is shown
in �gure 3.6.6. The data of �gure 3.6.6 was obtained via muon spin relaxation measure-

ment, where the muon spin relaxation rate σ is proportional to λ−2
L . The 1

λL
=
√
ns

µ0e2

meff

London equation relates the λ−2
L (T → 0) measurements to the superconducting electron

density. For nearly 2-dimensional materials we can express the superconducting electron
density using the previously discussed ns = ηd−1

il formula, where η is the areal density of
Bose-Einstein condensed electrons, and dil is the inter-layer distance of superconducting
planes. At T → 0, the Bose-Einstein condensed electrons all occupy the ground state,
thus contributing to the superconducting current. Therefore the λ−2

L (T → 0) ∼ Tc ob-
servation leads to the Tc ∼ ηBEC relationship as long as meff and dil remain constant.
The obtained Tc ∼ ηBEC relationship matches with equation 3.5.11: i.e. we observe that
Uemura's linear λ−2

L (T → 0) ∼ Tc relationship is a second validation of equation 3.5.11.
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Figure 3.6.6. The Tc ∼ λ−2
L (0) relationship, which is universally valid

in the underdoped region of cuprates. The labels indicate various cuprate
materials. Reproduced from [9].

At the optimal doping point, Tc deviates from the linear Uemura relationship observed
in the underdoped regime, implying that meff or dil become signi�cantly impacted by the
doping concentration. On the other hand, the Roeser-Huber formula is valid at the opti-
mal doping point. From this point of view, the Uemura and Roeser-Huber relationships
can be seen as complementary.

3.6.4.3. Overdoped superconductors. While the synthesis of optimally doped supercon-
ductors is relatively straightforward, further increases of doping concentration are experi-
mentally more di�cult to achieve. The synthesis of overdoped superconductors generally
requires harsh oxidation methods, such as ozone or �uorine treatment.

For cuprate type superconductors, the highest Tc is generally observed near p ≈ 0.15
doping concentration, where p measures the excess charge density with respect to the
Cu concentration. The p>0.15 regime is the �overdoped region�; it is characterized by
Tc = TBEC gradually descending to zero, and superconductivity completely disappears
around p ≈0.25. The corresponding superconducting phase diagram is illustrated in
�gure 3.6.7. Between 1990 and 2020, this phase diagram was thought to be universally
valid for cuprate type superconductors. An analogous phase diagram was identi�ed for
iron-based superconductors as well.

Preceding high-temperature superconductivity theories were formulated around ratio-
nalizing the emergence of high-temperature superconductivity from a non-Fermi liquid
ground state, motivated by the separation of these regions in the phase diagram of �gure
3.6.7.

Through ingenious experiments, the authors of [13] and [14] demonstrate that the
gradual disappearance of superconductivity in the over-doped regime is just the side-
e�ect of a growing number of crystal defects, caused by the harsh oxidation conditions.
Remarkably, the authors of [13] and [14] develop a �high pressure oxidation� method, suit-
able for the defect-free synthesis of overdoped cuprates. These works show that Tc ≈90 K
values can be obtained even in the p>0.6 region.

The results of [13] and [14] thus invalidate preceding high-temperature superconduc-
tivity theories by demonstrating that high-temperature superconductivity emerges from
an ordinary Fermi-sea ground state. On the other hand, this result is well aligned with
our model of electron Bose-Einstein condensation from ordinary Fermi-sea ground state.
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Figure 3.6.7. The historically formulated phase diagram of cuprate su-
perconductors, which remained unchallenged till recent years. The super-
conducting phase is represented by the purple dome. The yellow area rep-
resents the so-called pseudogap phase, characterized by a reduced dimen-
sionality of delocalized electron �ows. The blue area represents the usual
Fermi sea.

In section 3.5.3, we described the co-existence between Bose-Einstein condensed and
Fermi-sea electron populations in the anisotropic case; such co-existence is indeed ex-
perimentally demonstrated in [14] for a highly overdoped superconductor. Our novel
methodology is therefore suitable for the analysis of high-temperature superconductors
such as Ba2CuO3.2, which are described as anisotropic rather than 2-dimensional [13].

3.6.5. Thin-�lm 2-dimensional superconductors. As explained in section 3.5.2,
the TBEC temperature of stacked 2-dimensional superconductors depends on the pre-
condensation Fermi energy level. With all else being equal, a lower Fermi energy level
implies proportionally lower TBEC value.

Figure 3.6.8. The Tc of Y Ba2Cu3O7−δ nano-�lms, measured with two
di�erent substrate materials. Reproduced from [15].
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As the thickness of a metal �lm reaches below the 100 nm range, the metal-substrate
interface begins impacting the Fermi energy value. In other words, the Fermi energy level
becomes dependent on the substrate material.

We consider the Y Ba2Cu3O7−δ high-temperature superconductor material that com-
prises stacked 2-dimensional planes. As shown in �gure 3.6.8, experimental measurements
on a thin Y Ba2Cu3O7−δ superconductor �lms indeed show that Tc becomes dependent on
the substrate material as the �lm thickness reaches below the 100 nm range. This e�ect
demonstrates the predicted Tc dependence on the pre-condensation Fermi energy level.

3.6.6. Fermi-level depletion in the superconducting state. Our model predicts
a gradual Fermi energy level depletion in superconductors as their temperature is lowered
towards zero; this is depletion is caused by the high electron occupancy of a Bose-Einstein
condensate's energy eigenstates.

Figure 3.6.9. Fermi-level depletion upon transition from normal to
superconducting state, manifesting as interface polarity change. Left:
Ag-Superconductor interface in superconducting (S) state. Right: Ag-
Superconductor interface in normal (N) state. The polarity is measured by
laser-induced production of electron-hole pairs, which create photovoltaic
e�ect.

A direct signature of this anticipated Fermi level change is reported in references
[16, 17, 18]: these works measureMgB2, Bi−2223, and Y Ba2Cu3O7−δ materials' Fermi
level relative to a silver contact. As shown in �gure 3.6.9, the Fermi level depletion upon
entering superconducting state manifests as a polarity change in the superconductor-silver
interface. The interface polarity was detected by laser illumination technique, and the
same e�ect was found for all superconducting materials.

In contrast, preceding superconductivity theories consider superconducting electrons
to remain in the Fermi sea, i.e. they predict no Fermi level change upon superconducting
state transition, and thus become contradicted by experiments.

3.7. Conclusions

We calculated the Bose-Einstein condensation temperature formulas for isotropic,
stacked 2-dimensional, and anisotropic topologies. A remarkable match was found be-
tween the calculated temperature formulas and experimental data. We identi�ed the co-
existence of Fermi-Dirac and Bose-Einstein condensed particle populations in the isotropic
and anisotropic cases, while the stacked 2-dimensional topology leads to a sharp phase
transition.

We demonstrated that the superconducting phase transition is the Bose-Einstein con-
densation of the spin-triplet fraction of delocalized electrons. Our theory applies to both
conventional and high-temperature superconductors.

We anticipate that the Bose-Einstein condensation temperature formulas derived in
this work may lead to a generally accepted superconductivity theory based on conduction
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band electrons' Bose-Einstein condensation, and facilitate a rational search for higher-
temperature superconductors.

Acknowledgements: The author thanks Marc Fleury (LENR Capital) for �nancially
supporting a part of this research.
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CHAPTER 4

Josephson frequency calculation
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4.1. An overview of the Josephson e�ect

The Josephson e�ect is the oscillatory �ow of electrons between two superconductors,
that may occur when two superconductors are placed in proximity, with a thin insulating
barrier between them. The Josephson e�ect is of practical interest because it exhibits
a precise relationship between the involved voltage and frequency, both of which can be
accurately measured.

Figure 4.1.1. The superconducting electron �ow across a Josephson junc-
tion is illustrated on the left side. The superconductors on the left (Sl) and
right (Sr) carry the illustrated current �ow, and are separated by a thin
insulating �lm (I). The Josephson junction's I − V characteristics is shown
on the right side. An AC tunneling current is observed when I > Ic.

The arrangement of the two interfacing condensates is schematically shown in �gure
4.1.1. The N electrons occupying a Bose-Einstein condensed ground state comprise a
single wavefunction: ψ =

√
neiφ, where φ is the quantum mechanical phase of the Bose-

Einstein condensed electron ground state and n ≡ N
V
is its electron density.

When the current �ow is smaller than an Ic threshold value, there is zero electrostatic
potential di�erence between the two superconductors. The current has a steady DC char-
acteristic in this case; it is illustrated in the top part of �gure 4.1.2. Since there is no
potential di�erence across the insulator, let us consider the origin of electron tunneling
asymmetry, that is required for the DC current �ow. The tunneling probability is pro-
portional to the ground state electron density, which we denote as nl and nr for the left
and right sides, and therefore the nl>nr condition results in the observed net DC current.
One may ask how could the electron density vary, without causing an electrostatic poten-
tial di�erence. The Bose-Einstein condensate contains delocalized electrons at multiple
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Figure 4.1.2. Top: both sides of the junction are at the same voltage
when I < Ic, and the DC current �ows steadily. Bottom: a voltage V
appears across the junction when I > Ic, accompanied by an oscillating AC
current component. The oscillation between the AC Josephson current's
opposite phases is illustrated; the black arrow represents the AC current
component. On the left side, the AC tunneling current originates fully
from ψl. On the right side, the AC tunneling current originates fully from
ψr. In-between, both ψl and ψr contribute to the tunneling current.

low-lying energy levels. In the DC Josephson e�ect context, raising the ground state elec-
tron density without impacting the electrostatic potential implies depleting the density of
higher energy electron states, i.e. an adjustment of the Bose-Einstein condensed electron
distribution. Such electron distribution adjustment is possible only up to a point, and
that is the origin of the Ic current threshold.

When I > Ic, the di�erence between nl and nr is no longer compensated by other
electrons, and a voltage drop V appears across the insulator. This is accompanied by the
appearance of an oscillating tunneling current, generally referred to as the �AC Josephson
current�. This oscillating current is illustrated in the bottom part of �gure 4.1.2, and we
calculate its dynamics in the following paragraphs.

4.2. The calculation of Josephson oscillation frequency

Experiments show that the junction voltage V remains constant in the I > Ic regime.
Therefore, there is no displacement current contribution to the AC Josephson e�ect; it
based on tunneling currents only.

Let us �rstly consider the left side superconductor. We use the time-dependent
Schrödinger equation to calculate the phase evolution of ψl. A Bose-Einstein condensed
ground state has macroscopically large wavelength, and therefore its momentum goes to
zero: ℏ∂ψ

∂x
→ 0. The phase evolution of ψ is therefore determined by only two factors:

(4.2.1) iℏ
∂ψl
∂t

= eV ψl +Kψr

where ψl is the ground state wavefunction on the left side, ψr is the ground state wave-
function on the right side, and V is the electrostatic potential di�erence between the two
sides.
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As the insulator is thin, and the ground state accommodates a variable electron num-
ber, electrons tunnel between the ψl and ψr. The Kψr term is the tunneling electrons'
contribution to the phase evolution, and K is thus an unknown parameter. While we
may write equation 4.2.1 with any reference potential level of our choice, this reference
potential choice will in�uence the value of K. For equation 4.2.1, we choose the zero
potential level to be the potential experienced by ψr, which determines the value of K.
Consequently, the ψl is at eV potential in the context equation 4.2.1, and therefore it
contains the eV ψl term. We emphasize that the left side of equation 4.2.1 remains invari-
ant under any reference potential choice; the factors in front of ψl and ψr vary with the
reference potential choice, but the overall equation remains invariant.

We now consider the right side superconductor, and again use the Schrödinger equation
to calculate the phase evolution of ψr. We choose the zero potential level to be the
potential experienced by ψl: this is advantageous because by symmetry the cross-coupling
term becomes Kψl, carrying the same K value as before. Consequently, the ψr is at −eV
potential in the context of our second Schrödinger equation, which takes the following
form:

(4.2.2) iℏ
∂ψr
∂t

= −eV ψr +Kψl

We substitute ψl =
√
nle

iφl and ψr =
√
nre

iφr into equations 4.2.1 and 4.2.2:

(4.2.3) iℏ
(
∂
√
nl

∂t
eiφl + i

∂φl
∂t

√
nle

iφl

)
= eV

√
nle

iφl +K
√
nre

iφr

(4.2.4) iℏ
(
∂
√
nr

∂t
eiφr + i

∂φr
∂t

√
nre

iφr

)
= −eV

√
nre

iφr +K
√
nle

iφl

We rewrite the above equations, using ∂
√
n

∂t
= 1

2
√
n
∂n
∂t
, then dividing by ℏeiφl and ℏeiφr

respectively:

(4.2.5)
i

2
√
nl

∂nl
∂t

− ∂φl
∂t

√
nl =

eV

ℏ
√
nl +

K

ℏ
√
nre

iϕ

(4.2.6)
i

2
√
nr

∂nr
∂t

− ∂φr
∂t

√
nr = −eV

ℏ
√
nr +

K

ℏ
√
nle

−iϕ

where ϕ ≡ φr − φl.
In the above equations, both the real and imaginary parts must match each other.

The imaginary parts give ∂nl

∂t
= 2K

ℏ
√
nlnr sinϕ and ∂nr

∂t
= −2K

ℏ
√
nlnr sinϕ. Therefore,

∂nl

∂t
= −∂nr

∂t
which makes sense because the number of electrons gained on the left side

are lost from the right side, and vice versa. As −e∂n
∂t

gives the current density across the
Josephson junction, it follows that a sinusoidally oscillating current appears:

(4.2.7) J = e
2K

ℏ
√
nlnr sinϕ

The real parts of equations 4.2.5-4.2.6 give −∂φl

∂t
= eV

ℏ + K
ℏ

√
nr

nl
cosϕ and −∂φr

∂t
=

− eV
ℏ +K

ℏ

√
nl

nr
cosϕ. With the same superconducting material on both sides of the junction,

we anticipate nl ≈ nr. Although the DC current �ow requires nl>nr, their di�erence is
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a tiny fraction, and thus nr

nl
→ 1. Subtracting the real parts of equations 4.2.5-4.2.6 then

yields the Josephson frequency of the junction current:

(4.2.8) ωJosephson =
∂ϕ

∂t
=
∂φr
∂t

− ∂φl
∂t

=
2e

ℏ
V

One may ask whether it is allowed to subtract equations 4.2.5-4.2.6, which were formu-
lated using di�erent reference potential values. The key point is to recognize the physical
observables, that do not depend on the choice of reference potential. For instance, nl and
nr are measurable physical observables, that are independent of our reference potential
choice. The left sides of equations 4.2.5 and 4.2.6 de�ne the time evolution of the system:
for each equation its time evolution is a physical observable because the emitted radia-
tion frequency is a physical observable. In other words, if ∂φl

∂t
depended on our choice

of reference potential, the emitted radiation frequency would be no longer well de�ned.
Since the left sides of equations 4.2.5 and 4.2.6 are independent of our reference potential
choice, their right sides must be also independent of our reference potential choice. While
the individual terms on the right sides of equations 4.2.5 and 4.2.6 explicitly depend on
our reference potential choice, their sum is invariant. Therefore, our goal was to �nd such
a practical reference potential choice for each equation that makes our overall calculation
as simple as possible. In summary, the subtraction of equations 4.2.5-4.2.6 is a perfectly
valid operation.

A V=1 µV potential di�erence across the junction leads to f =
ωJosephson

2π
=483.6 MHz

current oscillation frequency, which must emit radiation at the same frequency. This
frequency range is measurable by radio frequency equipment.

4.3. Errors in preceding Josephson frequency calculations

We point out three crucial paradoxes in preceding superconductivity theories' inter-
pretation of the Josephson e�ect. Firstly, preceding theories consider superconducting
electrons to be at the Fermi energy level, while at the same time paradoxically using the
zero-momentum equations 4.2.1 and 4.2.2. Secondly, preceding theories consider numer-
ous superconducting electron pairs condensing into the same wavefunction, as required
for equations 4.2.1 and 4.2.2, while at the same time paradoxically claiming that this is
not a Bose-Einstein condensate. Thirdly, preceding theories consider equations 4.2.1 and
4.2.2 with a common reference potential, set to the potential value at the mid-point of the
insulating �lm. This means that ψl and ψr experience di�erent electric potentials, and
therefore the cross-coupling term of equations 4.2.1 and 4.2.2 cannot carry the same K
value. In summary, the Josephson e�ect naturally matches electrons' Bose-Einstein con-
densation model, but becomes paradoxical in the context of preceding superconductivity
theories.

4.4. Andreev re�ections

We address the phenomenon of so-called Andreev re�ections, which involve electron
transition from a semiconducting material into a superconducting metal. During an An-
dreev re�ection, a single electron travels towards a semiconductor-superconductor inter-
face; it transfers 2e charge across the interface, leaving behind a positively charged hole
that travels in opposite direction with respect to the incoming electron. The transferred
2e charges have anti-parallel correlated spin.

Some superconductivity theorists claim that Andreev re�ections arise because super-
conducting electrons are in a paired state, and that electron transition into a super-
conducting phase requires 2e charge transfer. But such claims stand in contrast to the
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above calculated results. Given that the Fermi-Dirac and Bose-Einstein condensed elec-
tron phases co-exist in a superconductor, let us �rstly clarify whether the 2e charge is
transferred into the Fermi-Dirac or the Bose-Einstein phase. In Andreev re�ection ex-
periments, the semiconductor's Fermi level is at lower energy than the superconductor's
Fermi level at T > Tc, so that the incoming electron pair has too low energy to occupy
an available electron state in the superconducting material at T > Tc - i.e. when it is
in its normal state. With the help of such set-up, some superconductivity researchers
aim to obtain signatures of �weakly bound but traveling� electron pairs, assuming that
a hypothetical �Cooper-pair binding energy� moves the electron pair across the apparent
energy barrier. The hidden assumption here is that Fermi energy level remains invariant
between the normal and superconducting states; however the experimental data of section
3.6.6 shows that this assumption is absolutely false. The Fermi energy level is depleted as
the temperature is lowered below Tc, and this removes the energy barrier against electron
entry into the superconductor's Fermi-sea phase.

Since the Andreev re�ection involves hole creation in the semiconducting material,
the injected traveling electron forms and incoherent singlet pair with an electron of the
semiconductor material. The spin-singlet state is inferred from their anti-parallel spin
correlation. Such a spin-singlet electron pair can freely transition to the superconductor's
Fermi-sea phase, given that there is no energy barrier between the two Fermi energy lev-
els. On the other hand, a spin-singlet electron pair cannot directly transition into the
Bose-Einstein condensed electron phase, for the reasons explained in chapter 3. There-
fore, Andreev re�ections do not involve any interaction with the Bose-Einstein condensed
electron phase; they are unrelated to superconductivity phenomena.

4.5. Experimental validations

The 2e
ℏ factor of equation 4.2.8 is also called the Josephson constant KJ . Using volt-

age and radiation frequency measurements, equation 4.2.8 has been validated at a great
precision; the current CODATA value for KJ is 4.835978484 · 1014 Hz/V [1].

The Schrödinger equations of section 4.1 are not speci�c to electrons, and therefore
the same e�ect should arise also for other types of Bose-Einstein condensates. As an-
ticipated, references [2, 3] report Josephson e�ect observations for atomic Bose-Einstein
condensates.

In section 3.6.2, we showed experimental evidence for individual electrons' transition
into the superconducting Bose-Einstein condensate. This data validates our methodol-
ogy of calculating the transition of individual electrons between the two Bose-Einstein
condensates.

In summary, our Josephson frequency calculation proves yet again that superconduct-
ing electrons form a Bose-Einstein condensate.
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Catalysts of electrons' Bose-Einstein condensation
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5.1. Simple examples of catalyzed Bose-Einstein condensation

Having explored the thermodynamics of Bose-Einstein condensation, the remaining
challenge is to predict the peak Tc temperature for various materials. To make progress
towards this practical goal, we must identify the catalytic e�ects on Bose-Einstein con-
densation, which increase the fraction of spin-triplet electron pairs. A catalyst can be
embedded in the material itself, or can be externally applied. For any given material, the
Tc prediction would �rstly estimate the energy di�erence between spin-singlet and spin-
triplet states of conduction band electron pairs, then estimate the e�ect of an applied
catalyst on the ratio of spin-triplet electrons, and �nally calculate Tc by applying chapter
3 formulas. To illustrate the e�ect of various catalysts, we start from simple examples.

The photo-illumination experiments described in reference [1] present a striking ex-
ample of UV illumination's catalytic e�ect on Tc. The authors of [1] illuminated an
under-doped Y Ba2Cu3O7−δ superconductor for some hours, and half an hour after the il-
lumination measured up to 13% higher Tc than before the experiment. The Tc increase was
higher for 300 nm UV illumination than for visible light illumination. Light illumination
can therefore increase the fraction of Bose-Einstein condensation capable electrons.

5.2. Phonons' catalytic role in elementary metals

At this point, we can identify the true role of phonons in superconductivity. Table
1 lists the highest Tc elementary metals at ambient pressure. Elementary metals in the
Tc>2 K group are either single-isotope elements or display the Tc ∼M−0.5 isotope e�ect,
where M is the isotope mass. It is therefore probable that all metals of the Tc>2 K group
would display the Tc ∼ M−0.5 isotope e�ect, if various isotopes of each element were
available. The Tc ∼ M−0.5 isotope e�ect is associated with phonon interactions for two
reasons: i) the Debye frequency of phonons is also proportional to M−0.5, and ii) except
for electron-phonon interactions, the nuclear mass plays no role in delocalized electron
dynamics.

In contrast, for elementary metals in the Tc<2 K group, the isotope mass has a ran-
domly varying coe�cient and there is no isotope e�ect at all in metals such as Ru or Zr.
I.e. phonons play no essential role in elementary metals' superconductivity in the Tc<2 K
group.

With reference to Homes' law, phonons have a mildly catalytic e�ect by scattering
delocalized electrons. In a small fraction of electron pairs, the phonon-induced scattering
�ips their spin correlation into spin-triplet state. Without this phonon e�ect, elementary
metals cannot reach even 2 K superconductivity at ambient pressure.

The phenomenology of catalytic phonon e�ects is described in reference [2], quantify-
ing the impact of electron-phonon coupling. The experimental data reviewed in reference
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Metal Tc Isotope

e�ect

Nb 9.25 K
Tc 8.2 K
Pb 7.2 K Tc ∼M−0.48

La 6 K
V 5.4 K
Ta 4.4 K
Hg 4.15 K Tc ∼M−0.5

Sn 3.7 K Tc ∼M−0.46

In 3.4 K
Tl 2.4 K Tc ∼M−0.5

Re 1.7 K Tc ∼M−0.38

Table 1. The listing of highest Tc elementary metals at ambient pressure.
The last column shows the isotope e�ect measurement, if the given element
has various isotopes.

[2] shows that a Tc of around 20 K can be achieved via phonon-catalyzed superconduc-
tivity.

5.3. The omnipresent coincidence between peak Tc and a phase change

A systematic analysis of superconducting phase diagrams reveals that superconducting
materials' phase changes have a catalytic e�ect on their electrons' Bose-Einstein conden-
sation. This is an independent catalytic e�ect from the above discussed phonon e�ect.

Figure 5.3.1. The approximate coincidence between a phase-change tem-
perature and the maximum temperature of a superconducting dome in iron-
based BaFe2As2 and FeSe type superconductors. Reproduced from [3].

Figures 5.3.1-5.3.5 illustrate the catalytic e�ect of phase changes: the Tc peak location
approximately coincides with a phase-change location. This e�ect is observed across many
di�erent superconductor families. As shown in �gure 5.3.1, variations of this same e�ect
can be observed even within one speci�c superconductor type, by varying the doping
type. This universally occurring coincidence between the Tc peak location and phase-
change location was only discovered in the 21st century, and was not predicted by any
preceding superconductivity theory.
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Figure 5.3.2. The approximate coincidence between a phase-change tem-
perature and the maximum temperature of a superconducting dome in
CeIn3, CeRhIn5 and UGe2 type superconductors. Reproduced from [4].
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Figure 5.3.3. The approximate coincidence between a phase-change tem-
perature and the maximum temperature of a superconducting dome in
CeCu2Si2 and CeCu2Ge2 type superconductors. Reproduced from [4].
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Figure 5.3.4. The approximate coincidence between a phase-change tem-
perature and the maximum temperature of a superconducting dome in
CePd2Si2 superconductor and in an organic salt superconductor. Repro-
duced from [5].

Figure 5.3.5. The approximate coincidence between a phase-change
temperature and the maximum temperature of a superconductivity in
Buckminsterfullerene-based superconductors. Reproduced from [6].

A phase change involves the re-arrangement of electron orbitals or lattice structure.
Close to the phase change temperature, there is some co-existence of two phases. Such
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co-existence involves a dynamic re-arrangement of lattice structures: these dynamic re-
arrangements create electron scattering sites that increase the resistivity of the normal
state. With reference to Homes' law, being near the phase-change boundary catalyzes
electrons' Bose-Einstein condensation. Speci�cally, the phase-change induced disorder
causes scattering in a fraction of electron pairs; this process �ips their spin correlation
into spin-triplet state.

Regarding cuprate type superconductors, while most of them have a single supercon-
ducting dome in the hole-doping region, there are examples of double superconducting
domes. La2-xBaxCuO4 is the most well-known such superconductor. After its discovery,
many speculative theories were published about mechanisms which �suppress supercon-
ductivity around the x=0.12 doping region�. However, our results reveal that nothing
suppresses superconductivity around the x=0.12 doping region: the two distinct regions
of optimal catalytic e�ects are around x=0.08 and x=0.16, and the Bose-Einstein conden-
sation catalyst is not strong enough to overlap the two domes. If the La2-xBaxCuO4 ma-
terial had stronger catalysts of Bose-Einstein condensation, leading to higher Tc, the two
domes would nicely overlap and there would be superconductivity also around the x=0.12
doping region. This process is nicely illustrated by the La2-xSrxCuO4 and Y Ba2Cu3O7−δ
superconductors; under a su�ciently strong magnetic �eld, which works against the catal-
ysis of electrons' Bose-Einstein condensation, the La2-xSrxCuO4 and Y Ba2Cu3O7−δ phase
diagrams also have two distinct superconducting domes [7, 8]. Without an applied mag-
netic �eld, the two superconducting domes of La2-xSrxCuO4 and Y Ba2Cu3O7−δ overlap,
and their phase diagram is dominated by the larger superconducting dome.

All these observations lead up to a major question: what is the phase-change at the
peaks of cuprate materials' superconducting domes, which catalyzes their exceptionally
high Tc? Taking the Y Ba2Cu3O7−δ example, which is a representative hole-doped cuprate
superconductor, �gure 5.3.6 shows that both of its superconducting dome peaks coincide
with the onset of a �charge density wave� (CDW) phase. Figure 5.3.7 shows the same
coincidence for the La2-xBaxCuO4 superconductor. The two-domed phase diagram of
hole-doped cuprates such as La2-xBaxCuO4, La2-xSrxCuO4, or Y Ba2Cu3O7−δ is naturally
explained by the two legs of the CDW phase-change, which de�ne two catalytic regimes.

The CDW phase is a periodic lattice distortion, which occurs spontaneously below
TCDW . In materials that comprise a CDW phase, the presence of such lattice distor-
tion lowers the total energy of delocalized electrons. While superconductivity researchers
notice that the CDW phase occurs in several cuprate type superconductors, this phase
transition's catalytic role has not been understood in prior studies. Up to now, �gure
5.3.7 was interpreted to mean that the CDW and superconductivity mechanisms are �in
competition� [7], since TCDW reaches its maximum in the same region where Tc reaches its
minimum. In contrast, we recognize a catalytic e�ect all along the phase-change boundary
denoted by the TCDW curve, and it is chapter 3 equations that determine how high the
superconducting domes are pulled up along the two legs of the TCDW curve.
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Figure 5.3.6. The phase diagram of electron-doped and hole-doped
cuprate superconductors. The CDW phase-change temperature and the
maximum temperature of superconducting dome peaks coincide in
Y Ba2Cu3O7−δ.

Figure 5.3.7. The CDW phase-change temperature (TCDW ) and the max-
imum temperature of superconducting dome peaks (Tc,max) coincide also in
La2-xBaxCuO4.

Having explored the catalytic role of CDW phase-changes, we are left with the fol-
lowing question: does the CDW phase-change related catalytic e�ect explain hole-doped
cuprates' exceptionally high Tc? Or is some other catalytic mechanism responsible for
hole-doped cuprates' exceptionally high Tc? In the following chapter, we explore this
question.
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CHAPTER 6

Weakly bound electrons in doped metals: a predicted electron

state that catalyzes spin-triplet production

Andras Kovacs[1]

[1] ExaFuse
E-mail: andras.kovacs@broadbit.com

Abstract. While the preceding chapters derived experimentally validated relation-
ships, this chapter makes predictions that are based on already established results. We
predict an electron state that allows spin coherent electrons at relatively high temper-
atures. Speci�cally, we predict the existence of weakly bound electron orbitals in hole-
doped metals, and calculate their binding energy. The binding energy of such electron
orbitals is in the 10 meV range, and their mean radius is in the nm range. Their existence
follows from relatively simple calculations.

Regarding hole-doped cuprate materials, our calculations show that the limiting
temperature of a weakly bound electron state is similar to hole-doped cuprates' peak
Tc. It is possible that this newly recognized electron state catalyzes conduction band
electrons' Bose-Einstein condensation.

6.1. Introduction

Recall from chapter 3 that electron pairs' transition between spin-singlet and spin-
triplet states is a pre-condition to Bose-Einstein condensation: this pre-condition is illus-
trated in �gure 3.1.1. Weaker spin pairing energies facilitate more probable transition into
spin-triplet state. An electron pair's spin pairing energy is determined by their proximity.
In the context of bound electrons, the larger their mean orbital radius is, the weaker their
spin pairing energy becomes. It follows that the fraction of spin-triplet electron pairs is
the highest in weakly bound electron states. In other words, a weakly bound electron
state is the best candidate for observing bound electrons' spin coherence.

High-temperature superconductors are hole-doped metals. Figure 2.1.1 shows their
residual diamagnetism extending up to twice their superconducting Tc temperature. The
same phenomenon is seen also in other doped metals, such as Nb0.15Si0.85. In contrast,
�gure 2.1.1 shows ordinary lead metal's residual diamagnetism fading out very soon above
its superconducting Tc temperature. This data suggests that hole-doped metals may host
a coherent electron state, whose coherence is maintained for some extended half-life.

Altogether, these observations motivate the study of weakly bound electron states in
hole doped metals.

6.2. Thomas-Fermi screening

We start by deriving the Thomas-Fermi screening mechanism, which is well-established
and applicable to all doped metals. Suppose that one lattice ion of a metal is replaced by
a more positively charged ion. How do delocalized electrons respond to this more positive
site? As they are attracted to it, the electron density increases around this more positive
site.

76



6.2. THOMAS-FERMI SCREENING 77

In the strict sense of the Drude-Sommerfeld model, which was introduced in section 3.2,
single frequency electron waves uniformly �ll the the interior of a metal, and thus cannot
respond to any local positive charge. We need to employ a careful approximation, which
allows to estimate the local electron response without giving up the Drude-Sommerfeld
model.

The main idea is illustrated in �gure 6.2.1. The zero level of �gure 6.2.1 corresponds
to the lowest k value in the interior of the metal, and the horizontal lines above it are
the higher k value states. The potential dip around the positive charge shifts down this
lowest energy state; the delocalized electrons are attracted to the more positively charged
region. Since the electrons minimize their total energy, the top of the electron sea remains
�at at the Fermi energy level.

Figure 6.2.1. The electron screening around a positive charge is modeled
as additional standing waves at a lower energy level around that charge

Figure 6.2.2. The appearance of newly �lled electron states near the pos-
itive charge

Although delocalized electrons are single-frequency standing waves only in the region of
normal electron concentration, the simplifying assumption of the Thomas-Fermi screening
theory is to model them as single frequency standing waves also in the sloping region of
�gure 6.2.1. Then the net e�ect is the appearance of additional electron states, as shown
in the pink shaded region of �gure 6.2.2.

An other way of thinking about the Thomas-Fermi screening theory is to imagine
that the potential slope of �gure 6.2.1 is approximated by a staircase-like sequence of �at
segments, which are in thermodynamic balance with each other. Notice that the Fermi



6.2. THOMAS-FERMI SCREENING 78

energy level has higher kF in the segments which are closer to the positive charge than in
the segments of normal electron concentration. This re�ects the dynamic that delocalized
electrons speed up in the proximity of a positive charge.

Our objective is to calculate the V (r) potential curve, which corresponds to the equi-
librium distribution of delocalized electrons. It comprises two parts:

V (r) = Vext (r) + δV (r)

where Vext (r) =
1

4πε0
Zexe
r

is the unscreened Coulomb potential of the Zexe positive excess

charge, and the δV (r) screening potential is calculated from the increased electron density
by using Poisson's equation:

(6.2.1) ∇2δV (r) =
e

ε0
δn =

e

ε0
2d3d (EF ) [eV (r)]

where d3d (EF ) is the density of electron states given by equation 3.2.8, and the factor
of 2 accounts for the pair-wise electron occupancy of each Fermi sea state. The eV (r)
energy di�erence is graphically illustrated in �gure 6.2.2.

We guess that the solution is of the following form:

(6.2.2) V (r) =
1

4πε0

Zexe

r
e−rkTF

where kTF is the Thomas-Fermi wavenumber, whose rTF = k−1
TF inverse is also referred

to as the Thomas-Fermi screening length. The resulting expression for δV (r) is then the
following:

(6.2.3) δV (r) =
1

4πε0

Zexe

r

(
e−rkTF − 1

)
In spherical coordinates, the left side of equation 6.2.1 evaluates to:

(6.2.4)[
∇2δV (r)

]
3d

=
1

r2
∂

∂r

(
r2
∂δV (r)

∂r

)
=
Zexe

4πε0

1

r2
∂

∂r

(
−
(
e−rkTF − 1

)
− rkTF

(
e−rkTF

))
=

=
Zexe

4πε0

[
kTF
r2

e−rkTF − kTF
r2

e−rkTF +
k2TF
r
e−rkTF

]
=

k2TF
4πε0

Zexe

r
e−rkTF

In the 3-dimensional case, the right side of equation 6.2.1 evaluates to:

(6.2.5)
e2

ε0
2d3d (EF )

1

4πε0

Zexe

r
e−rkTF =

(
e2

4πε20

(√
m

ℏ

)3 √
2

π2

√
EF

)
Zexe

r
e−rkTF

The correspondence between the above two equations shows that we guessed the cor-
rect form of the solution, and the ful�llment of equation 6.2.1 yields the following result
for kTF :

(6.2.6)

kTF = e

√(√
m

ℏ

)3 √
2

ε0π2

4
√
EF


3d

In common metals, EF ≈7 eV. Since kTF only weakly depends on the precise EF value,
we can evaluate kTF by using EF=7 eV. The resulting Thomas-Fermi screening length is:



6.3. ORBITALS UNDER ELECTRON SCREENING EFFECT 79

(6.2.7)
[
kTF ≈ 18× 109 m−1

]
3d

[rTF ≈ 0.056 nm]3d

In the 2-dimensional case, the left side of equation 6.2.1 is di�cult to evaluate for
a single plane, because the charge distribution is no longer spherically symmetric. In
practice, 2-dimensional metals comprise stacked planes, with graphite-like structure. For
stacked planes, we can estimate that the screening charge distribution is still spherically
symmetric, with the strongest screening in the plane where the positively charged ion is,
and gradually weaker screening in the neighboring planes. The left side of equation 6.2.1
then evaluates in the same way as for the 3-dimensional case:

(6.2.8)
[
∇2δV (r)

]
2d,stack

≈
[
∇2δV (r)

]
3d

We proceed to evaluate the right side of equation 6.2.1:

(6.2.9)
e2

ε0

[
2d2d (EF )

1

dil

]
1

4πε0

Zexe

r
e−rkTF =

(
e2

4πε20

m

ℏ2
1

πdil

)
Zexe

r
e−rkTF

where dil is the inter-layer spacing of the 2-dimensional stack, and d2d (EF ) is given by
equation 3.2.9. As 2d2d (EF ) counts the density of states within one plane, we need to use
the 2d2d (EF )

1
dil

expression in order to get the volumetric density of states.
The above equations lead to the following result for kTF :

(6.2.10)

[
kTF = e

√
m

ε0ℏ2
1

πdil

]
2d,stack

In these 2-dimensional stacked materials, the Thomas-Fermi screening length mainly
depends on the inter-layer spacing parameter. In graphite, dil =0.34 nm, and we thus get
kTF = 2.4 × 109 m−1 and rTF=0.4 nm. That is an order of magnitude larger screening
radius value than in ordinary 3-dimensional metals. The most studied high-temperature
superconductor material is Y Ba2Cu3O7−δ; due to its highly anisotropic diamagnetism
it can be modeled as a stack of 2-dimensional metallic planes. According to measure-
ments, Y Ba2Cu3O7−δ has 1.17 nm lattice parameter along its c-axis, which contains two
conducting planes. Therefore, dil =0.585 nm in Y Ba2Cu3O7−δ, and its Thomas-Fermi
screening length is rTF=0.52 nm, which is slightly larger than in graphite.

6.3. Orbitals under electron screening e�ect

A natural question is to ask what prevents some delocalized electrons from forming a
localized orbit around a more positively charged doping site. The main hindrance is that
any unbound electron sees only a fraction of this larger nuclear charge, as it is screened
by other delocalized electrons.

Suppose that an electron does form a localized Bohr orbit around a Zex charged site,
at a mean orbit radius rscr, where the scr index denotes that it is a partially screened
orbit. We calculate the positive charge which the localized electron experiences at the
rscr distance. In the unscreened case, an electron localized at mean distance r experiences
1

4πε0
Zexe
r

potential and −1
4πε0

Zexe
r2

electric �eld. In the actual screened case, the localized
electron experiences the following potential:
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U =
1

4πε0

Zexe

rscr
e−rscr/rTF

The experienced electric �eld is the radial derivative of the screened potential:

E =
−1

4πε0

Zexe

rscr
e−rscr/rTF

(
1

rscr
+

1

rTF

)
The ratio of screened and unscreened charges corresponds to the ratio of screened and

unscreened electric �elds:

(6.3.1) Zscr = Zexe
−rscr/rTF

(
1 +

rscr
rTF

)
At the same time, in the eigenstate solution of the Dirac equation the mean orbital

radius is inversely proportional to the experienced charge:

(6.3.2) rscr =
a0
Zscr

where a0=52.9 pm is the Bohr radius. Combining the above two equations, we may
calculate rscr:

(6.3.3)
a0
rscr

= Zexe
−rscr/rTF

(
1 +

rscr
rTF

)
The above equation gives two bounded solutions for rscr, which we observe by nu-

merical computation. The �rst one is very close to the ordinary Bohr orbit value, and
we interpret it as ordinary bound electron orbitals. The second solution is a surprisingly
large orbital radius: the electron feels only a fraction of the positive ion charge from this
screened orbital.

Figure 6.3.1. The increase of average copper valence value with growing
hole doping rate. Hole doping grows as z → 0 in Y Ba2Cu3O7−z. There is
a close correlation between the Tc of Y Ba2Cu3O7−z and the valence of its
Cu sites, reproduced from [1].
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Equation 6.3.3 is a �rst approximation, which calculates the charge that an electron
sees from its mean orbit radius. This calculation assumes that the screened s-orbital has
the same radial distribution as an ordinary s-orbital, while in reality the Dirac equation's
eigenstate will be somewhat di�erent because the experienced charge has a radial depen-
dence. Nevertheless, the simple equation 6.3.3 can be used for estimating the radius, and
it illustrates the principles involved.

Let us take the example of Y Ba2Cu3O7−δ material, where we estimated rTF=0.52 nm.
Most Cu sites have approximately Z = 2 charge value, as illustrated in �gure 6.3.1. This
usual Z value appears periodically in the lattice, and generates the usual �at Fermi sea.
However, the second solution of equation 6.3.3 must relate to an exceptional Z value,
that is then screened over a relatively large distance. As can be seen in �gure 6.3.1,
Y Ba2Cu3O7−δ hole doping increases the average Cu valence value. Some Cu atoms thus
obtain +3 valence state. Therefore, we may take Zex = 1, and then the second solution of
equation 6.3.3 yields rscr=3.1 nm. Such mean radius parameter corresponds to a binding
energy of just Eb=3.9 meV. Orbits with such low binding energy can not be realized at
room temperature. These estimated rscr and Eb values are quite similar in other hole-
doped cuprate materials as well.

The phase transition into weakly bound state happens mostly around the T = Eb/kb
temperature, where the temperature �uctuations become low enough for the weakly bound
electron state to exist.

The periodically occurring Cu sites with +1 excess charge create a periodic pattern,
comprising the electron density variation illustrated in �gure 6.2.1. Such a periodic pat-
tern is the CDW phenomenon. In the CDW context, the above calculated Eb value can
be identi�ed with the so-called �charge excitation energy gap� - a term introduced by
CDW researchers: Eb is the energy needed for changing the charge value on a lattice site.
The extent to which Cu sites with +1 excess charge distort the crystal lattice depends on
the presence or absence of weakly bound electrons which counter-balance the +1 excess
charge. It follows that the T = Eb/kb temperature determines the CDW phase transition
temperature.

6.4. E�ective electron mass considerations

In the preceding sections, we used the mass of an isolated electron in our calculations.
As an electron moves through a solid-state lattice, it interacts with the positively charged
lattice sites. These interactions generate an e�ective electron mass, which determines the
energy - wavenumber relationship. When this e�ective electron mass di�ers from the free
electron mass, equation 3.2.3 must be written as:

E (k) = E0 + Ek = E0 +
(ℏk)2

2meff

where meff is the e�ective electron mass, Ek is the kinetic energy of a delocalized electron
with wavenumber k, and E0 is the lowest energy state in the conduction band. The meff

calculation method can be found for example in [2]. Hole-doped cuprate materials are
known to have meff > m [3, 4, 5], which must be accounted for. The meffvalue applies
to both delocalized and weakly bound electrons, as in both cases the electron moves across
the lattice. Equations 6.2.6, 6.2.10 and 6.3.3 thus take the following form:

(6.4.1)

r−1
TF = kTF = e

√(√
meff

ℏ

)3
1√

2ε0π2

4
√
EF


3d
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(6.4.2)

[
r−1
TF = kTF = e

√
meff

ε0ℏ2
1

πdil

]
2d,stack

(6.4.3)
a0
rscr

=
meff

m
Zexe

−rscr/rTF

(
1 +

rscr
rTF

)
The

meff

m
factor of the above equation indicates that, with all else being equal, the weakly

bound orbital radius decreases when the e�ective electron mass increases.

Figure 6.4.1. The e�ective electron mass meff and superconducting
critical temperature Tc as a function of hole concentration. These meff and
Tc data for Y Ba2Cu3O7−δ are from [3].

Figure 6.4.1 shows how meff changes with the doping rate in Y Ba2Cu3O7−δ. Since
Tc reaches its maximum at the p = 0.16 hole concentration, we use the corresponding
meff ≈ 3me e�ective mass value for Tc,max estimation.

Employing equations 6.4.2-6.4.3, table 1 shows weakly bound electrons' binding energy
and phase transition temperature in the representative Y Ba2Cu3O7−δ superconductor.
The obtained phase transition temperature is surprisingly close to the highest Tc in hole-
doped cuprates.

Superconductor Zex dil E�ective e− mass rscr Eb Eb/kb

Y Ba2Cu3O7−δ +1 0.585 nm meff = 3me (p = 0.16) 2 nm 9.1 meV 106 K
Table 1. Weakly bound electrons' binding energy and phase transition
temperature in the representative Y Ba2Cu3O7−δ superconductor, calcu-
lated from equations 6.4.2-6.4.3.

The highest Tc of Y Ba2Cu3O7−δ is Tc,max=93 K near p = 0.16 hole concentration. If
weakly bound electrons catalyze its superconductivity, then according to table 1 it may
still have a potential for reaching higher Tc value. This potential for a higher Tc value in
Y Ba2Cu3O7−δ is validated by reference [6], whose authors found two types of additives
that increase the Tc of Y Ba2Cu3O7−δ to over 100 K.

Figure 5.3.6 shows the weaker Y Ba2Cu3O7−δ superconducting dome peaking near
p = 0.09 hole concentration, where meff ≈ me can be estimated by interpolating �gure
6.4.1 data. For this regime, the previously calculated Eb=3.9 meV value corresponds to
Eb/kb ≈ Tc,max=45 K, which also reasonably matches the experimental Tc,max value of
this doping region.
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Our results explain why large meff values increase the Tc temperature potential of
hole-doped cuprates. The large meff pre-condition has been noticed already in the past
[4], but the underlying physical process was not understood previously.

6.5. The catalytic e�ect of weakly bound electrons

Up to now, we studied a single electron's weakly bound state. When a weakly bound
orbital is occupied by an electron pair, thermal �uctuations shall easily �ip it into a spin-
triplet state, which is the established pre-condition for their Bose-Einstein condensation.

At the above-calculated Eb/kb temperature range, even a single electron has a limited
lifetime in a weakly bound orbital. When two electrons occupy such an orbital, their
bound lifetime is even shorter because their presence causes additional screening of the
excess positive charge; they soon transition into delocalized state.

In this sense the continuous transition between delocalized and weakly bound elec-
tron states is a catalytic mechanism, which increases the fraction of spin-triplet state
delocalized electrons. We propose that this catalytic mechanism explains weakly bound
electrons' relevance to superconductivity.

In summary, our weakly bound electron state calculation is based on straightforward
energy minimization methodology. The low spin pairing energy between weakly bound
electrons explains how spin-triplet electron pairs are produced. Insofar as such elec-
tron states catalyze superconductivity, candidate materials' Bose-Einstein condensation
temperature must be evaluated according to equation 3.5.11, and their phase transition
temperature must be estimated according to equations 6.4.2-6.4.3.
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CHAPTER 7

Can inner-shell electrons Bose-Einstein condense?
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Abstract. This chapter describes new experimental results that show clear evidences
of altered inner-shell electron state formation. From chemistry point of view, these phe-
nomena open up a new �eld that deals with the manipulation of inner-shell electron
states. From physics point of view, these phenomena are unexpected and do not match
the known set of electron orbitals. Surprisingly, the measured experimental data are
compatible with Bose-Einstein condensation phenomena. Therefore, the intriguing sub-
ject matter of this chapter might be a pioneering observation of Bose-Einstein condensed
inner-shell electron states.

7.1. Introduction

In preceding chapters, we investigated the Bose-Einstein condensation of delocalized
electrons, that occupy the conduction band. The Bose-Einstein condensation process
calculations are simpler for delocalized electrons than for bound electrons. However, the
explained concepts do not restrict the Bose-Einstein condensation process to delocalized
electrons only; such condensation is applicable to any electron state when it becomes
thermodynamically favorable. This raises the question of whether bound electrons would
Bose-Einstein condense under certain experimental conditions. We pointed out in chapter
1 that high pressure conditions would be thermodynamically favorable, but they are the
least interesting for practical applications.

If bound electrons' Bose-Einstein condensation was encountered under ambient condi-
tions, how would one recognize it? Chapter 3 established the thermodynamically balanced
co-existence that Fermi-Dirac and Bose-Einstein condensed electron states. In the con-
text of bound electrons, Bose-Einstein condensation is most energetically favorable in the
inner-shell electron states, where the energy gain of multi-electron occupancy is measured
in kilo electron-volts or even tens of kilo electron-volts. The co-existing electron states
would comprise Bose-Einstein condensed inner-shell electron states, surrounded by outer-
shell electrons in usual Fermi-Dirac states. To recognize such electron states, inner-shell
electron probes must be used. Our measurements involve such inner-shell probes, based
on x-ray spectroscopy. The following sections describe three complementing experimental
signatures of inner-shell electron states that are occupied by a varying number of electrons.
While one should not exclude alternative explanations of these results, our intepretation
of Bose-Einstein condensed inner-shell electron states matches all experimental results
and �ts the previously established theory. It thus becomes the simplest explanation of
observed phenomena, favored by Occam's razor principle.

Regardless of the applicable inner-shell electron interaction model, the following ex-
periments demonstrate that the scope of chemistry can be extended into a whole new
domain: the manipulation of inner-shell electron states.
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In the following, we focus on the explanation of our measurements, without disclosing
the details of the involved materials' preparation. Those readers who become interested
in this topic are welcome to contact the authors.

7.2. Elevated electron concentration in the inner-shell region

Two samples of a thorium- and bromine-containing material, each weighing 0.2 g, are
placed into the anodic and cathodic compartments of a CR2032 type coin cell. These
samples comprise a solid state material with rubber-like consistency, and have su�cient
electronic and ionic conductivity for the applied electro-chemical process. The two coin
cell compartments are separated by a cation-conducting membrane. A charging current
of 0.5 mA is passed through the cell for 20 hours, i.e. electrons are pushed into the anodic
compartment. Thereafter, the sample is taken out from the anodic compartment, and
its x-ray emissions are monitored by passive x-ray spectroscopy technique. Figure 7.2.1
shows the obtained x-ray spectra. The observed inner-shell excitation peaks are higher
during the initial 2 hours than in the subsequent 24 hour measurement. During the initial
2 hours, even the Po L-α peak is well discernible, while it fades into noise during later
measurement. The lowest energy region of the x-ray spectrum is also higher during the
initial 2 hours than in the subsequent 24 hour measurement, and this low-energy excess
is consistent with the braking radiation of energized electrons.

In contrast, performing the same measurements on the sample from the cathodic com-
partment yields static x-ray spectra. In both compartments, the electron-migration and
ion-migration processes are the same. The di�erence is the introduction of excess electrons
in the anodic compartment versus bromine oxidation in the cathodic compartment.

This data demonstrates that some inner-shell electron states can be re-arranged by the
introduction of excess electrons, yielding a metastable con�guration. More speci�cally,
�gure 7.2.1 shows the largest percentage-wise changes for the Tl, Bi, and Po peaks, which
are at the end of the thorium decay chain. The nuclear decays of 212Pb and 212Bi emit
energetic particles, which may ionize L-shell electrons, and the observed Tl, Bi, and Po
peaks correspond to x-ray emission during subsequent re-�llings of the L-shell. At the
start of the thorium decay chain, the nuclear decay rate remains constant. This constant
nuclear decay rate can be seen in the Ra peaks' static amplitudes, which correspond
to the 232Th → 228Ra + 4He and 228Th → 224Ra + 4He decay events. Assuming a
constant or approximately constant nuclear decay rate, the strongly elevated Tl, Bi, and
Po peaks indicate a strongly increased electron concentration in the inner-shell region
of involved atoms; such an increased electron concentration proportionally increases the
L-shell ionization probability. A key point: increasing the electron concentration in an
inner-shell orbital is possible only with Bose-Einstein condensed inner-shell electron states.
Furthermore, it is anticipated that the introduction of excess electrons would increase the
electron occupancy of Bose-Einstein condensed states because some incoming electrons
fall down into the inner-shell Bose-Einstein condensate. The rising inner-shell peaks of
the anodic compartment can be interpreted as this anticipated inner-shell electron density
increase.

Nuclear decays emit highly energetic electrons or 4He particles. When a highly ener-
getic particle collides with Bose-Einstein condensed electrons, it breaks up these electrons'
phase coherence. Consequently, the vacant inner-shell electron states become re-�lled with
incoherent electrons, emitting x-rays at the usual de-excitation energy levels. In this case,
a larger number of electrons are ionized from the inner-shell than the number of electrons
re-�lling these states. Such an excess of ionized electrons produces excess braking radia-
tion, which explains the elevated x-ray readings in the low-energy part of the spectrum.
The excessive ionized electrons may also knock out electrons from nearby Br and Th
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Figure 7.2.1. Overlayed x-ray spectrum measurements on a thorium- and
bromine-containing material, that was electro-chemically processed. Black
colour: measured shortly after the electro-chemical procedure, the measur-
ing time is 2 hours. Gray colour: next measurement, the measuring time is
24 hours.

atoms, resulting in a slight increase of Br and Th peaks, that are also visible in �gure
7.2.1.

In summary, the observed phenomenon is compatible with Bose-Einstein condensed
inner-shell electron states. It is di�cult to �nd an alternative explanation for the strongly
elevated Tl, Bi, and Po L-α peaks.

7.3. Magnetically induced x-ray emission

For this experiment, we use the same type of thorium- and bromine-containing material
that was used in section 7.2. Before the experiment, it is saturated by electrons. A
neodymium magnet is placed onto a sample, which is already on the x-ray spectrometer. A
few seconds later, we start monitoring the sample material by passive x-ray spectroscopy.
This procedure ensures that the x-ray spectrometer operates under a static magnetic �eld,
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Figure 7.3.1. The x-ray spectrum of a magnetically induced x-ray burst,
emitted by the thorium- and bromine-containing material. The chart shows
consecutive x-ray spectra, saved at 15 minute intervals, as well as long du-
ration pre-experiment and follow-up spectra. All measurements are nor-
malized to the same measurement duration, and were obtained by passive
x-ray spectroscopy method. Pre-experiment: measured just before the ex-
periment, 36 hours duration. 1: a 15 minutes measurement that starts
directly after a magnet is placed onto the sample. The magnet remains on
the sample during the following measurements. 2: next 15 minutes measure-
ment. 3: next 15 minutes measurement. Follow-up: a 2 hours measurement
that starts directly after the previous measurement.

which does not in�uence the instrument operation1. Figure 7.3.1 shows the consecutive x-
ray spectra measurements, saved at 15 minute intervals, as well as the pre-experiment and
follow-up spectra. It can be seen in �gure 7.3.1 that the applied magnetic �eld triggers
a relatively strong x-ray emission in the 1-2 keV energy range. This emission lasts for
10-15 minutes, and its energy extends up to 2.2 keV. Figure 7.3.2 shows the same data as
�gure 7.3.1, but represented on a logarithmic scale. In the lowest energy range of 0.5-1
keV, the attenuation of pre-experiment and post-experiment spectra is analogous to the
attenuation of the burst signal. The observed x-ray emission cannot originate from any
ordinary chemical processes, but only from su�ciently energetic inner-shell electrons.

We established in the preceding chapters that magnetic �elds are detrimental to elec-
trons' Bose-Einstein condensed state. In chapter 2, we investigated the physical process
behind superconductors' perfect diamagnetism. Bose-Einstein condensed inner-shell elec-
trons shall analogously respond to an applied magnetic �eld; it shifts the thermodynamic
balance between the Fermi-Dirac and Bose-Einstein condensed electron states. The result-
ing re-arrangement of some inner-shell electrons involves a large change in their binding
energies. We therefore propose that magnetically induced x-ray emission is a consequence
of the magnetically induced disruption of some inner-shell electrons' Bose-Einstein con-
densed state.

1We veri�ed by measurements that our x-ray spectrometer is not in�uenced by static magnetic �elds.
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Figure 7.3.2. The same data as �gure 7.3.1, but represented on a log-
arithmic scale, and showing the spectrum only up to 2.5 keV. Here, the
low-energy attenuation region can be well observed.

7.4. Anomalous inner-shell electron excitation lines

Suppose that N number of Bose-Einstein condensed electrons occupy the inner-most
K-shell orbital. Taking any one of these electrons, statistically we �nd N−1

2
electrons that

are radially closer to the nucleus, and N−1
2

electrons that are radially further away from the
nucleus. These Bose-Einstein condensed electrons therefore perceive an e�ective nuclear
charge of Z − N−1

2
, where Z is the actual nuclear charge. As a consequence, the electron

binding energy of the inner-most orbital is di�erent for Fermi-Dirac versus Bose-Einstein
condensed electron cases. With an appropriate measurement method, which does not
break up such a Bose-Einstein condensate, it should be possible to measure this energy
di�erence.

7.4.1. Anomalous electron excitation measurement on a pre-treated copper

surface. A material comprising mainly copper is prepared in thin �lm form. While
remaining under an inert atmosphere, the surface of this material is illuminated for a
month by a green laser pointer light. This laser illumination causes a surface color change.
Subsequently, this sample is analyzed by XRF technique; the obtained spectrum is shown
in �gure 7.4.1. This spectrum contains an unexpected peak appearing at 5.44 keV, which
is close to the K-α peak of Cr. However, while this XRF peak is prominent at 8 kV
XRF voltage, it is barely visible in the 15 kV spectrum, and it is completely absent
in the 40 kV and 50 kV spectra. Such anomalous peak counts are in contrast to the
peak count evolution of physically present elements, such as Ar (ambient) or Cu, whose
XRF peaks are also in this x-ray energy region. Therefore, the XRF peak appearing at
5.44 keV does not correspond to any ordinary inner-shell state; it is a signature of an
unconventional inner-shell electron state. This unconventional inner-shell electron state
is further characterized by the following anomalous features of this 5.44 keV peak: its
peak energy is 25 eV higher than a real 5.415 keV centered Cr K-α peak, it is wider than
the XRF peaks of ordinary inner-shell electron states, and its shape is asymmetric with
respect to the center-line at 5.44 keV energy. We also note that our sample material does
not have any Cr contamination.
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Figure 7.4.1. XRF spectrum measurements on a copper-based material
after laser illumination. The labels indicated the applied voltage in the
XRF device.

The same sample was also analyzed by EDS technique, using 30 keV impacting electron
energy. The x-ray spectra obtained by EDS do not contain any peak near 5.44 keV. With
reference to section 7.2, such impact of such high energy electrons breaks up any Bose-
Einstein condensed electron states.

The anomalous 5.44 keV peak cannot be a Bragg di�raction peak because the angle
between the x-ray source and detector is almost 360°, which is well outside the Bragg
di�raction condition. Furthermore, reference [1] demonstrates that if a Bragg di�raction
peak shows up under one XRF voltage setting, it shows up at the same energy position
under all other XRF voltage settings as well.

This anomalous XRF peak can be interpreted on the basis of above explained e�ective
nuclear charge, perceived by Bose-Einstein condensed inner-shell electrons. I.e. the 5.44
keV XRF peak demonstrates that in a fraction of atoms, inner-shell electrons are bound
to an �e�ective nuclear charge� of +24, which is lower than the actually present Z=29
charge value of Cu nuclei. The Z=29 and Z − N−1

2
=24 values mean that, on average,

N=11 electrons occupy the inner-most K-shell. We do not observe any change in our
sample material with the passage of time, i.e. this electron con�guration appears to be
stable under ambient conditions.

7.4.2. Anomalous electron excitation measurement on a pre-treated quartz

surface. In this experiment, we operate a krypton-�lled quartz tube, with an electrically
heated �lament in the middle. The �lament is powered by AC current, and its temperature
reaches around 2500°C. To avoid overheating, we operate the krypton-�lled tube under
repeating ON-OFF regime. A krypton-�lled tube was operated in this way for 8 days,
and remains operational at the conclusion of the experiment run.

After the experiment, we notice a bump-like spot on the quartz surface, and it has
opaque gray coloration. In repeated experiment runs, the appearance of such a spot is
reproducible with good probability.

We break the tube open after the experiment, and analyze the inner surface of the gray
spot by XRF technique; the obtained spectrum is shown in �gure 7.4.2. This spectrum
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Figure 7.4.2. XRF spectrum measurements on the gray spot that ap-
pears on quartz surface after the experiment run. Logarithmic scale is shown
on the left, and linear scale is shown on the right. The labels indicated the
applied voltage in the XRF device.

contains an unexpected peak appearing at 5 keV, which is close to the K-α peak of
vanadium. As in the previous example, this XRF peak is prominent at 8 kV XRF voltage,
barely visible in the 15 kV spectrum, and completely absent in the 40 kV and 50 kV
spectra. Such anomalous peak counts are in contrast to the peak count evolution of
physically present elements, such as Fe, whose XRF peak is also in this x-ray energy
region. Therefore, the XRF peak appearing at 5 keV does not correspond to any ordinary
inner-shell state; it is a signature of an unconventional inner-shell electron state. This
unconventional inner-shell state has 48 eV higher peak energy than a real 4.952 keV
centered V K-α peak. We also veri�ed by XRF that the employed �lament material does
not have any vanadium contamination.

As before, we interpret this anomalous XRF peak on the basis of e�ective nuclear
charge, perceived by Bose-Einstein condensed inner-shell electrons. The 5 keV XRF peak
demonstrates that in a fraction of atoms, inner-shell electrons are bound to an �e�ective
nuclear charge� of +23, which is lower than the actually present Z=36 charge value of Kr
nuclei. The Z=36 and Z− N−1

2
=23 values mean that, on average, N=27 electrons occupy

the inner-most K-shell. We do not observe any change in our sample material with the
passage of time, i.e. this electron con�guration also appears to be stable under ambient
conditions.

Lastly, we note that the operating condition of Kr gas is reminiscent of the fast-cooled
palladium-deuteride example from chapter 3, which retains its thermally generated spin-
triplets during fast cooling, and thus becomes superconducting already at 60 K temper-
ature. Within the krypton-�lled tube, Kr atoms heat up to 2500°C temperature at the
tungsten surface, while also being exposed to intense light radiation in the few eV photon
energy range. Krypton's orbital electrons therefore have a much higher probability of
spin-triplet formation at the tungsten surface than under ambient conditions. Some spin-
triplets comprising Kr atoms quickly cool to near-ambient temperature when they reach
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the quartz surface; the probability of such spin-triplet electron pairs' Bose-Einstein con-
densation is therefore maximized at the inner quartz surface, which captures the resulting
pseudo-atom. In summary, our experimental observations can be interpreted according
to the already established electron Bose-Einstein condensation principles.
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