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Preface

This book is for all who are curious about our physical world. We present electromagnetism as a
proper �eld theory, and show how electromagnetic �elds and charges are both de�ned by the electromag-
netic vector potential. Using this �eld theory, it becomes possible to quantitatively describe the electron's
internal structure. Our work builds upon the ideas of Maxwell, Dirac, and their notable contemporaries
such as Einstein, Heisenberg, and De Broglie. We believe that our ideas formulated in chapters 1-3, were
already implicit in the theoretical foundations of physics established more than eighty years ago, but for
whatever reason were never fully developed afterwards. In a plausible alternative past, our ideas might
have been considered self-evident already by the mid-20th century. It is our hope, that as the book
becomes more widely known, it will be recognized as a standard tool of modern physics.

We develop our ideas using the powerful tool of geometric algebra and the foundational concepts
stemming from Maxwell and Dirac but also contribute something new in our approach. Key mathematical
concepts and structures are explained in the �rst chapters with the aim of making the book accessible to
readers who have the interest and the capability for self-study. Nevertheless, it does presuppose a certain
level of mathematical skills essential for developing a correct understanding of electromagnetics and its
Lagrangian.

To justify our theory, we discuss a large set of validating experimental data coming from mainstream
physics which we believe, in contrast to some current theories, can be explained in an insightful and
simple way with our approach. We are not interested in imposing ad-hoc rules (such as imposing the
Lorenz gauge rule onto electromagnetic equations, or cutting of the counting of electromagnetic �eld
energy at a certain distance from a supposedly point-like electron) and neither in analyzing exotic fringe
experiments (such as the study of yet another meson particle with 10−22 sec lifetime) but instead, we
shall refer to very fundamental data that characterizes electrons.

The history of physics may be viewed as a progression from particle-oriented to wave-oriented concepts
to wave-particle duality. A thousand years ago, if one tried to talk about ��elds� and �waves�, they would
have been met with blank stares. Only the concept of matter particles existed at the time, with direct
mechanical interactions among them. Waves were only observed on the surface of water, and were neither
understood mathematically nor were they thought to be related to anything else. Scientists, at the time,
thought of light as a stream of small �light balls�. In contrast, today physicists describe light as waves
in the electromagnetic �eld but also exhibiting particle properties. All mechanical and chemical forces
are also described as being exerted by such electromagnetic waves. Approximately, a hundred years ago,
the notion that elementary matter particles might also be quantum mechanical waves started to gain
acceptance. In this sense, our book simply �ts into the historic trend, and represents a next step in the
understanding of wave-oriented concepts.

It is worth recalling that such steps in the past have usually been met by strong opposition from
the scienti�c community. We illustrate this through the brief history of light model evolution from the
original �light balls� description. Around 1687, Newton and Leibnitz independently discovered di�erential
calculus, which is needed to quantitatively describe waves. However, it took one hundred and thirty more
years to recognize light as a wave. In 1818, the scienti�c Académie of France o�ered a prize for a consistent
understanding of light di�raction. At that time, light di�raction experiments were considered an anomaly
of the prevailing �light balls� model. One of the participants, civil engineer and optometrist Augustin-Jean
Fresnel submitted a thesis in which he explained di�raction from analysis of both the Huygens�Fresnel
principle and Young's double slit experiment. This irritated the academic �old guard�, who were staunch
believers in the particle theory of light and were skeptical of its alternative, the wave theory. Poisson,
a member of the Académie, studied Fresnel's theory in detail and looked for a way to prove it wrong.
Poisson thought that he had found a �aw when he demonstrated that Fresnel's theory predicts an on-axis
bright spot in the shadow of a circular obstacle blocking a point source of light, where the particle-theory
of light predicts complete darkness. Poisson argued this was absurd and Fresnel's model was wrong.
The head of the committee, Dominique-François-Jean Arago, performed the experiment. To everyone's
surprise, he observed the predicted bright spot, which vindicated the wave model. Fresnel won the
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competition, and the wave nature of light gained acceptance in mainstream scienti�c circles. However,
the ��eld� part was still missing, and mainstream physicists now considered light to be a wave in the
physical aether, which they believed �lled the vacuum. In essence, the traveling �light balls� model was
replaced by a �sea of light carrying balls� model, facilitating the waves.

Maxwell's discovery of electromagnetic �eld equations in 1862 spelled the beginning of the end for
this �sea of light carrying balls� model. After Einstein's discovery of relativity in the early 20th century,
Silberstein published a seminal book in 1914, titled �The Theory of Relativity�. In this book he quantita-
tively described how light is carried by a relativistic electromagnetic �eld. The journal, Nature, published
a vitriolic review of Silberstein's work. From the perspective of the reviewer, Silberstein's main sin was
to have left the aether out of the discussion: �There is scarcely a reference to the longings of the physicist
for an objective aether ... Many will read Dr Silberstein's careful and detailed introduction to it, consider
his illustrations, and follow his logic, and yet feel there is something lacking. The argument in favor of
an aether is not dealt with. The reluctance that Lorentz had to abandon the aether remains. The seeker
after a deeper understanding of the physical is apt to �ght shy of a principle which cannot be expressed in
terms of concepts to which he can give some degree of substantiality.� Eventually, the quantitative theory
of electromagnetic �eld waves gave birth to a wide range of new radio technologies, while the theory of
aether was of no use to radio engineers. The aether theory was then quietly abandoned by theoretical
physicists. Starting from Fresnel's thesis, the whole process took over one hundred years.

The fundamental equations of physics appear to be remarkably straightforward but the set of their
possible solutions is anything but simple. This is not a contradiction: simple equations may allow for many
classes of solutions, various symmetries and novel interpretations. Our approach of seeing elementary
particles as being akin to electromagnetic waves, although it might not initially be widely accepted, is
consistent with the standard equations. We hope there will be some modern-day Aragos among readers,
who will strive to resolve experimental anomalies, by carefully considering the various options, and by
trying to design experiments to test the quantitative predictions of our theory.

In the last part of this introduction we outline our scienti�c methodology. Scientists like to think of
their respective �eld as an additive process, which advances through the accumulation of ever wiser ideas
and ever more elaborate concepts. That is generally true, but one must be careful to retain checks and
balances and correct mistakes or oversights that may slip in.

Correcting mistakes often reveals a more fundamental perspective, whereby one realizes that separate
physical laws or phenomena are one and the same thing and can be uni�ed. To give an example from a
pre-Newtonian era, the celestial motion of planets was accurately and predictively described by Earth-
centered epicycloid formulas. The gravitational fall of bodies was accurately and predictively described
by a constant acceleration formula. These two phenomenological laws were thought to be completely
unrelated, and scientists of the day had no sense of any mistaken assumption: their formulas were
predictive and accurate. They were the top theoreticians of the day, drawn from the same gene pool as
today's theoreticians. But their thinking was locked into a mistaken paradigm. Once Newton's e�orts
revealed the mistaken assumptions, the phenomena of celestial motions and falling bodies were uni�ed,
although it continued to meet opposition from some who insisted that their model of Earth-centered
epicycloid motions was the correct model of reality. One must understand that phenomenological formulas
may involve unrealistic models of reality, even while being experimentally correct.

Correcting mistaken historic assumptions is therefore an important aspect of our methodology. The
more one re�ects on the foundations, the more one understands the obstacles that stand in the way
of progress. We hope readers will appreciate our quest for truth. Correcting mistakes is by no way
disrespectful of the scientists who worked on the involved problems. We are grateful for the e�orts of
others, and recognize that without their results this book would be impossible. In particular, we would
like to mention the e�orts of Marcel Riesz, who pioneered the geometric algebra perspective for studying
electromagnetism, and the e�orts of H. E. Moses, who �rst proposed that Maxwell equations may be
treated as proper �eld equations. In case some readers might be wondering why we did not cite or
mention others; be assured that we did not have the intention to ignore anyone, and will gladly add
names when appropriate. We simply aim to keep the text as self-consistent and focused as possible.
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Our book adheres to Occam's razor principle, and demonstrates that a better understanding of
electromagnetic wave dynamics leads to an improved understanding of our physical world. We outline
below the key physics equations of the book, so that the reader knows what to anticipate. In the
following equations, the ∂ operator is expressed in terms of space-time basis vectors. The evolution of
electromagnetic �elds and charges can be equivalently calculated from Maxwell's equation or from the
electromagnetic Lagrangian density:

∂2A
□
= 0 ⇔ L =

1

2µ0
∂A

□
∂̃A

□

where the space-time metric is �at. The above equations are the fundamental equations of electrody-
namics, but they have not been previously expressed in this simple form because electric charges have
been treated as externally added �black box� objects. We identify both longitudinal and transversal
electromagnetic wave solutions. We �nd that the electron dynamics is de�ned by a Lagrangian action
S , which is derived from a longitudinal electromagnetic wave:

S =

ˆ
(eA · c− eV ) dt

where V and A are the electromagnetic vector potential components experienced by the electron charge.
The above formula for S remains valid down to the classical electron radius scale. Using these quantities,
the electron's mass-energy can be expressed in natural units as [me = eV = eA]NU . When an electron
is observed from a reference frame boosted by a Lorentz boost factor γL, its relativistic mass becomes
γL times larger. We show that this relativistic mass increase is caused by the combination of transversal
relativistic Doppler shift and Lorentz contraction; these e�ects adjust both the electron wavelength and
electron size by γ−1

L factor. The shrinking electron size intensi�es the electromagnetic �elds around the
electron charge, and the experienced vector potential becomes proportional to the frequency of electron
wave. De Broglie's mc2 = ℏω relation thus remains valid in any reference frame.

In the absence of noise, the above-mentioned S action describes a well-de�ned electron path. How-
ever, the electron wave is embedded in a noisy vacuum environment. Speci�cally, the mean electric and
magnetic �eld energy of vacuum noise is given by the following expression:

ε0Ē
2 =

B̄2

µ0
=

1

V

∑ 1

2
ℏω

where V is a unit volume element, and the summation runs over all possible frequencies. Essentially, the
reduced Planck constant ℏ de�nes the vacuum noise amplitude. The above in�nite summation yields an
in�nitely large noise energy. The reason why this in�nitely large noise e�ect is not perceived in classical
mechanics is that the electron responds to vacuum noise only in a surprisingly tight frequency range:
ωmax

ωmin
= 2π. We determine this phenomenological ωmax

ωmin
= 2π ratio from the Lamb-shift e�ect, and our

work is the �rst correct evaluation of this ratio as far as we know. At the vacuum noise amplitude de�ned
by ℏ, the electron wave is thus transparent to all noise frequencies higher than ωmax or lower than ωmin:
that is the linear electromagnetic regime where all electromagnetic waves pass through each other. I.e.
the threshold between linear and non-linear electromagnetic regimes depends on the wave amplitude and
wave frequency as well. The higher an electromagnetic wave amplitude is, the more readily it interacts
with an electron wave, giving all the well-known electron-light interaction phenomena.

The vacuum noise adds a random walk pattern onto the evolution of the electron wave: the overall
electron propagation probability between two points is obtained by calculating and summing up eiS /ℏ

factors for each possible path connecting these points, where S is the above-mentioned electromagnetic
action and the ℏ noise amplitude becomes a di�usion parameter. On the one hand, the electron is subject
to a noise-induced random distribution, and on the other hand its electromagnetic wave evolves according
to the above-indicated Lagrangian. Regarding this second aspect, the electron's quantum mechanical
wavenumber becomes the Lorentz-transformed spatial component of the electromagnetic wave's time
evolution, and we derive the Aharonov-Bohm formula describing the evolution of the quantum mechanical
phase φ:

φ =
e

ℏ

ˆ
A · dl = e

ℏ

ˆ
T

V dt

where V and A are again the electromagnetic vector potential components experienced by the electron
charge. From these considerations, it is possible to derive the Schrödinger and Dirac equations that
describe the evolution of the electron wavefunction ψ. Keeping in mind that the electron wavefunction
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describes a probability distribution where ψ is strictly scalar valued, the Dirac equation takes on a
particularly simple mathematical form, and can be written in two equivalent ways:

Iℏ∂ψ = mcψ ⇔ ℏ∂ψ = −mcψ

where I is the Cli�ord pseudoscalar, Im ≡ m is the tri-vector representation of the electron mass, and m
is the vector representation of electron mass. The needlessly complicated preceding formulations of the
Dirac equation are no longer necessary. Although the Dirac equation is linear, it yields extremely precise
energy eigenvalue solutions, not just a linear estimate. This means that the electron mass term of the
Dirac equation somehow incorporates non-linearity, and corresponds to a parameter value that stabilizes
the underlying non-linear electron wave. In the context of Maxwell's equation, non-linear ter �ms appear
as a consequence of curved space-time, and it is well known that electromagnetic energy density creates
space-time curvature. We show that the electromagnetic energy density energy-momentum density vector
w can be expressed as a rotation of the time base vector γt :

w =
1

2µ0

(
∂A

□
γt∂̃A□

)
where ∂A

□
gives the electromagnetic �eld in a physical sense and it is a rotor in a mathematical sense.

The more intense the electromagnetic �eld is, the more it twists the time basis vector with respect to the
spatial basis vectors. Since the Dirac equation's mass term incorporates non-linearity, it must be somehow
related to space-time curvature. We refer to the work of Paul O'Hara, who found that the Dirac equation
is such an eigenvalue equations where the mass term can be expressed in terms of space-time metric:

∂ψ

∂s
=
mc

ℏ
ψ

where s measures space-time distance, and it is de�ned as ds2 ≡ gµνdx
µdxν . The above relationship

expresses a very interesting property of the electron wave. We propose the following hypothesis on the
origin of electron mass value me: this value must lead to the ∂ψ

∂s = mec
ℏ ψ relation, which as an apparent

condition on particle stability, although we do not yet understand the reason behind this condition.
Any stable electron state is an eigenstate solution of the Dirac equation: such solutions are standing

waves characterized by a well-de�ned energy eigenvalue. We �nd that all stable electron charge circula-
tions generate a magnetic �ux that is quantized in units of h/e. A stable electron state generally involves
two such circulations: its orbital current and its spin current.

Our companion book titled �The Bose-Einstein condensation of electrons: a long overdue discovery of
how superconductors really work� applies the above outlined concepts to problems of practical interest.
It is shown that the well-de�ned energy eigenstate condition requires that N electrons occupying a
quantum mechanical state must be isotropically spin correlated, and in the case of incoherent electrons
this condition can be ful�lled only for N ≤ 2. I.e. the electron spin value has nothing to do with Pauli
exclusion, and after 100 years of postulates based approach to the Pauli exclusion principle we shed light
on how chemistry really works. For the N = 2 case, we show that isotropic spin correlation can be
ful�lled for both parallel and anti-parallel spin alignments. The parallel spin alignment of electron pairs
is usually energetically unfavorable, and thus rarely observed. Nevertheless, the experimentally con�rmed
existence of electron pairs' parallel spin alignment con�rms our calculations and invalidates the historically
embraced postulates about anti-symmetric electron wavefunctions. The practical relevance of electron
pairs' parallel spin alignment is that these pairs seed the Bose-Einstein condensation of electron waves.
We shows experimental evidence of both delocalized and bound electrons' Bose-Einstein condensation:
the delocalized case is the superconductivity phenomena, and the bound case opens up a whole new
domain of chemistry.
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An introduction to Cli�ord algebra

Andras Kovacs[1]

[1] ExaFuse. E-mail: andras.kovacs@broadbit.com

We begin by brie�y introducing the mathematical language of Cli�ord algebra, that is used extensively
in this book. Beyond this introduction, a complete Cli�ord algebra tutorial can be found in reference [1].

Mathematical nomenclature

The following notations are used throughout the book.

A
□
, A: four-vector in Minkowski spacetime;

A△,A: three-vector in physical space;
γx, γxy, γxyz, γxyzt ≡ I: Cli�ord bases for vectors, bi-vectors, tri-vectors, and the pseudo-scalar;

Ã: Cli�ord reversion of A;
C̄: the complex conjugate of a complex number C;

0.1. Cli�ord algebra overview

Cli�ord algebra is de�ned by the multiplication rule of its basis elements. The Cli�ord basis elements
are de�ned to obey the following multiplication rules:

(0.1.1) γ2t = −1, γ2x = γ2y = γ2z = 1

(0.1.2) γiγj = −γjγi (i ̸= j)

The t index represents the time coordinate, and indices x, y, z represent spatial coordinates. Thus
the Cli�ord algebra basis elements can be identi�ed with the unit vectors spanning our four dimensional
space-time.

The above de�ned algebra of the 3+1 basis elements is referred to as Cl3,1 (R) algebra type. In the
context of the Dirac equation, the above base vectors are equivalent to the Dirac gamma matrices.

The multiplication of two di�erent base vectors de�nes a bi-vector, which spans an oriented surface.
We use the following notation for bi-vectors: γij ≡ γiγj . Similarly, tri-vectors are volume elements,
and denoted as: γijk ≡ γiγjγk. The dimensionality of an expression goes up through multiplication of
di�erent base vector components.

Based on the above de�nitions, we observe the following multiplication properties:

(0.1.3) γxγxyz = γyz, γyγxyz = −γxz, γzγxyz = γxy

(0.1.4) γyzγxyz = −γx, γzxγxyz = −γy, γxyγxyz = −γz

(0.1.5) −1 = γ2ij = γ2ijk (i ̸= j ̸= k, i ̸= t, j ̸= t, k ̸= t)

The above multiplication examples illustrate how the dimensionality of an expression goes down
through the multiplication of same base vector components.

A useful notation for a space-time vector is Q = (Qtγt,Q), where the bold capital notation is denoting
a spatial vector, i.e. Q = qxγx + qyγy + qzγz. The product of two vectors is:

(0.1.6) PQ = (Ptγt,P) (Qtγt,Q) = (−PtQt+P ·Q) + (−PtQ+PQt) γt +P×Qγxyz
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In the above expression the (−PtQt+P ·Q) part is scalar, while the other terms are bi-vectors.
However, we wrote the bivector terms by highlighting two spatial vectors: (−PtQ+PQt) and P×Q. It
must be kept in mind that the bold P×Q notation represents a spatial vector.

We de�ne the unitary pseudoscalar as I ≡ γtxyz, composed of the space-time unit vectors. Alge-
braically, we can identify the imaginary unit i with the unitary pseudoscalar I. We note that Iγt =
γtxyzγt = γxyz, and that IP = −PI because a vector contains one index same as γtxyz. Because of
this commutation rule, multiplying a vector by I is di�erent from numerical multiplication. On the other
hand, the multiplication of a scalar or bi-vector by I commutes the same way as numerical multiplication.

0.2. An electromagnetic application example

We de�ne the di�erentiation operator ∂ in space-time algebra:

(0.2.1) ∂ = γx
∂

∂x
+ γy

∂

∂y
+ γz

∂

∂z
+ γt

1

c

∂

∂t
≡ ∇+ γt

1

c
∂t,

where ∇ = γx
∂
∂x + γy

∂
∂y + γz

∂
∂z and c = 1/

√
ϵ0µ0).

The electromagnetic vector potential can be written as A ≡ (Atγt,A), where A contains the spatial
components of the vector potential.

We apply the ∂ operator to A:

(0.2.2) ∂A =

(
−1

c
∂tAt +∇ ·A

)
+

(
−1

c
∂tA+∇At

)
γt +∇×Aγxyz =

=

(
−1

c
∂tAt +∇ ·A

)
+Bγxyz +Eγt

where the terms inside the parenthesis have scalar dimensionality, the magnetic �eld B is a spatial vector,
and the electric �eld E is also a spatial vector.

Equation 0.2.2 essentially means that ∂A yields the electromagnetic �elds. Alternatively, the above
space-time di�erentiation can also be written with the following notation:

(0.2.3) ∂A = ∂ ·A+ ∂ ∧A = S + F

where S ≡
(
− 1
c∂tAt +∇ ·A

)
contains the scalar result of dot-product di�erentiation, while the F ≡

Bγxyz+Eγt bi-vector is the result of wedge-product di�erentiation and it is known as the anti-symmetric
Faraday tensor.

References [2, 3, 4, 5, 6, 7] thoroughly explain the practical use of Cli�ord algebra in physics.

0.3. Cli�ord reversion and Cli�ord rotors

We de�ne Cli�ord reversion as the operator which reverses the order of base vectors. Scalars and

vectors thus remain unchanged upon reversion: S̃ = S and γ̃i = γi. Reversion acts as follows on bi-vectors

and tri-vectors: (̃γiγj) = γjγi = −γiγj and ˜(γiγjγk) = γkγjγi = −γiγjγk.
Consider the γxγy plane spanned by the orthogonal unit vectors γx and γy. As shown in reference

[1], a rotation in this plane by an angle 2θ can is a linear map r, that is given by:

(0.3.1) γy 7→ r (γy) = e−θγxγyγye
θγxγy ≡ RγyR̃

where the object R = e−θγxγy is called a rotor, and it encodes in a compact way both the plane of
rotation and the angle.

When the same map is applied to a basis vector which is orthogonal to the rotation plane, it remains
una�ected by the rotation:

(0.3.2) γz 7→ r (γz) = e−θγxγyγze
θγxγy = γz

Regarding a rotation around an arbitrary axis, it can be performed by some rotor R = e−θm∧n,
where m ∧ n spans the plane in which the rotation is performed, and the angle of rotation is 2θ.

It is important to note that these rotation rules also apply to the four-vectors of the space-time
algebra. In particular, rotors with pure spatial bi-vector parts (such as γxγy) generate ordinary rotations,
whereas γt containing bi-vectors (such as γzγt) generate hyperbolic rotations which are the Lorentz boosts.
Rotor operations are a very powerful geometric tool for numerous applications.
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The group of three dimensional rotations is the SO (3) group. In Cli�ord algebra, rotation can be
represented by two unitary complex numbers. The group of two unitary complex numbers is the SU (2)
group. The important point here is that a rotor with angle θ generates physical rotation with angle 2θ.
Thus one full circle in the rotor space corresponds to two full circles of physical rotation. This is what
mathematicians mean by saying that the SU (2) group is a double cover of the SO (3) group.
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CHAPTER 1

Maxwell's equations and Occam's razor

Francesco Celani[1,2], Antonino Oscar Di Tommaso[3] and Giorgio Vassallo[2,3]

[1] Istituto Nazionale di Fisica Nucleare (INFN-LNF), Via E. Fermi 56, 00044 Frascati, Roma, Italy.
E-mail: francesco.celani@lnf.infn.it.

[2] International Society for Condensed Matter Nuclear Science (ISCMNS)-UK.
[3] Università degli Studi di Palermo - Engineering Department, viale delle Scienze, 90128 Palermo,

Italy. E-mail: antoninooscar.ditommaso@unipa.it, giorgio.vassallo@unipa.it.

Nomenclature

Symbol, name, SI units, natural units (NU).

A
□
: electromagnetic four-potential [V · s ·m−1], [eV];

r
□
: four-position vector [m], [eV−1];

G: electromagnetic �eld [V · s ·m−2], [eV2];
F : electromagnetic �eld bivector [V · s ·m−2], [eV2];
B: �ux density �eld [V · s ·m−2] = [T], [eV2];
E: electric �eld [V ·m−1], [eV2];
S: scalar �eld [V · s ·m−2], [eV2];
J

□e: four-current density �eld [A ·m−2], [eV3];
v

□
: four-velocity vector [m · s−1], [1];

A′: electromagnetic eight-potential [V · s ·m−1], [eV];
P : pseudoscalar �eld [V · s ·m−2], [eV2];
J

□m: magnetic four-current density �eld [A · s ·m−3], [eV3];
ρ: charge density [A · s ·m−3 = C ·m−3], [eV3];
ρm: magnetic charge density [A ·m−2], [eV3];
x, y, z: space coordinates [m], [eV−1], [1.973 270 5 · 10−7 m = 1 eV−1];
t: time variable [s], [eV−1], [6.582 122 · 10−16 s = 1 eV−1];
c: light speed in vacuum [2.997 924 58 · 108 m · s−1], [1];
µ0: permeability of vacuum [4π · 10−7 V · s ·A−1 ·m−1], [4π];
ϵ0: dielectric constant of vacuum [8.854 187 817 · 10−12 A · s ·V−1 ·m−1], [ 1

4π ];

P
□
: electromagnetic four-momentum [kg ·m · s−1], [eV];

S: generalized Poynting vector [W ·m−2], [eV4].
w: speci�c energy [J ·m−3], [eV4].

1.1. Introduction

Science is based on the creation and validation of models of abstract concepts and experimental data.
For this reason it is important to examine the rules used to evaluate the quality of a model. Occam's
razor principle emphasizes the simplicity and conciseness of the model: among di�erent models that �t
experimental data, the simplest one must be preferred, i.e. the model that does not introduce concepts or
entities that are not strictly necessary. The following sentences in Latin [2] brie�y illustrate this principle:

Pluralitas non est ponenda sine necessitate.
Frustra �t per plura quod potest �eri per pauciora.
Entia non sunt multiplicanda praeter necessitatem.
which can be translated respectively as �plurality should not be posited without necessity.�, �it is

futile to do with more things that which can be done with fewer� and �entities must not be multiplied
beyond necessity�.

According to this principle, the model quality can be measured by means of two fundamental param-
eters:

(1) Good agreement of model's predictions with experimental data and/or with other expected
results;
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(2) The model's simplicity: a value that is inversely related to the amount of information, concepts,
entities, exceptions, postulates, parameters and variables used by the model itself.

These rules are universal, and can be applied in many contexts [16]. In this chapter, we apply Occam's
razor principle to Maxwell's equations.

We introduce and use the space-time Cli�ord algebra, showing that only one fundamental physical
entity is su�cient to describe the origin of electromagnetic �elds, charges and currents: the electromag-
netic four-potential. The vector potential should not be viewed only as a mathematical tool but as a real
physical entity, as suggested by the Aharonov-Bohm e�ect, a quantum mechanical phenomenon in which
a charged particle is a�ected by the electromagnetic potentials in regions in which the electromagnetic
�elds are null [1]. Actually, many papers deal with the application of geometric algebra to Maxwell's
equation (see [3, 4, 5, 7, 19] and many others), but few of them deal with the concept of scalar �eld.
Among the most interesting works we can �nd a paper by Giuliano Bettini [3], two papers written by K.
J. van Vlaenderen [21, 22] and two papers of Lee M. Hively [14, 15].

In this work we propose a reinterpretation of Maxwell's equations which does not use any gauge: the
unique constraint is that the electromagnetic four-potential must be represented by a harmonic function,
as proposed by G. Bettini [3]. A mistaken application of the so called �Lorenz gauge� in Maxwell's
equations denies the status of real physical entity to a scalar �eld that, although not directly observable,
has a gradient in space-time with clear physical meaning: the microscopic four-current density �eld. As
a consequence of our approach, a spinor �eld that encodes the electromagnetic �elds and the derivative
of a scalar �eld emerges from Maxwell's equations. The scalar �eld will be here investigated and it
will be shown that its existence has many implications and consequences on the microscopic structure
of electrical charges and currents. It points towards a particular Zitterbewegung model for charged
elementary particles.

This chapter is composed of the following parts: Section 1.2 illustrates how Maxwell's equations can
be derived only from the electromagnetic four potential; Section 1.3 deals with the main properties of the
electromagnetic �eld, the derivation of Maxwell's equations from the Lagrangian density, the generalized
Poynting vector, the symmetrical Maxwell's equations and, �nally, in Section 1.4 some essential points
are summarized.

1.2. Gaugeless electrodynamics as a proper �eld theory

The behavior of electromagnetic waves was described in 1865 by James Clerk Maxwell in his work
�Dynamical Theory of the Electromagnetic Field�. Maxwell's equations are a system of partial di�erential
equations, where di�erent concepts are employed: electric �eld, �ux density (or magnetic) �eld, charge
density and current density [3, 4, 7].

In order to study the undulatory behavior of particles, the concept of wave function was introduced.
Following the interpretation of Born, the �square� of this function represents the probability density to
�nd a particle in a point of the space, just like the undulatory theory of light, whose intensity is given by
the square of the electromagnetic wave amplitude. Now, following the principle of Occam's razor, which
suggests carefulness in the introduction of new concepts, we consider two interesting possibilities:

(1) �nd a common origin of the conceptual entities used in Maxwell's equations;
(2) consider the wave function as a particular reformulation of concepts/entities already present in

Maxwell's equations.

1.2.1. The Electromagnetic Four Potential. Maxwell's equations can be reinterpreted by means
of a unique entity, namely, the electromagnetic four potential, as de�ned by the following equation:

(1.2.1) A
□

(
r

□

)
= γxAx

(
r

□

)
+ γyAy

(
r

□

)
+ γzAz

(
r

□

)
+ γtAt

(
r

□

)
,

where each of the vector potential components Ax, Ay, Az and At are functions of the space-time
coordinates and r

□
(x, y, z, t) = γxx+ γyy + γzz − γtct = r△ − γtct is the position vector in space-time.

The γi unit vectors are the basis elements of Cl3,1 Cli�ord algebra. From now on, in the four-potential and
in other �eld quantities the variable r

□
will be omitted for simplicity. The four-potential has dimension

in SI units equal to [V · s ·m−1]. Two basic assumptions are made:

(1) the vector potential �eld A
□
is represented by a harmonic function;

(2) the space is homogeneous, linear and isotropic.

Therefore, we assume a function that links a vector of four components to each point of the space-time
as the unique source of Maxwell's equations entities.
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We use the following de�nition of the operator ∂ in space-time algebra

(1.2.2) ∂ = γx
∂

∂x
+ γy

∂

∂y
+ γz

∂

∂z
+ γt

1

c

∂

∂t
= ∇+ γt

1

c

∂

∂t
,

where ∇ = γx
∂
∂x + γy

∂
∂y + γz

∂
∂z and c = 1/

√
ϵ0µ0).

If A
□
is the vector potential de�ned by (1.2.1) the following expression can be written:

(1.2.3) ∂A
□
= ∂ ·A

□
+ ∂ ∧A

□
= S + F = G,

where

(1.2.4) G(x, y, z, t) = S + γxγtFxt + γyγtFyt + γzγtFzt + γyγzFyz + γxγzFxz + γxγyFxy.

Expanding (1.2.3), by considering the products as shown in Table 1 and by collecting all terms with the
same blade, the following set of equations is found:

(1.2.5) ∂ ·A
□
= S =

∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

− 1

c

∂At
∂t

(1.2.6) γxγtFxt = γxγt
1

c
Ex = γxγt

(
∂At
∂x

− 1

c

∂Ax
∂t

)

(1.2.7) γyγtFyt = γyγt
1

c
Ey = γyγt

(
∂At
∂y

− 1

c

∂Ay
∂t

)

(1.2.8) γzγtFzt = γzγt
1

c
Ez = γzγt

(
∂At
∂z

− 1

c

∂Az
∂t

)

(1.2.9) γyγzFyz = γyγzBx = γyγz

(
∂Az
∂y

− ∂Ay
∂z

)

(1.2.10) γxγzFxz = −γxγzBy = γxγz

(
∂Az
∂x

− ∂Ax
∂z

)

(1.2.11) γxγyFxy = γxγyBz = γxγy

(
∂Ay
∂x

− ∂Ax
∂y

)
,

where S = S1 + S2 + S3 + S4 is a scalar �eld, whose meaning will be clari�ed later. It is to be noted
that equating (1.2.5) to zero, i.e. S = 0, gives an expression that takes the form of the �Lorenz gauge�
condition if At = −φ

c , where φ is the scalar potential of the electric �eld [4, 20, 22].

Table 1. Products ∂A
□
.

∂A
□

γxAx γyAy γzAz γtAt

γx
∂
∂x

∂Ax

∂x γxγy
∂Ay

∂x
γxγz

∂Az

∂x
γxγt

∂At

∂x

γy
∂
∂y −γxγy ∂Ax

∂y
∂Ay

∂y
γyγz

∂Az

∂y
γyγt

∂At

∂y

γz
∂
∂z −γxγz ∂Ax

∂z −γyγz ∂Ay

∂z
∂Az

∂z
γzγt

∂At

∂z

γt
1
c
∂
∂t −γxγt 1c

∂Ax

∂t −γyγt 1c
∂Ay

∂t
−γzγt 1c

∂Az

∂t
− 1
c
∂At

∂t

Equation (1.2.5) can be rewritten as

(1.2.12) S = ∇ ·A△ − 1

c

∂At
∂t

were A△ = γxAx + γyAy + γzAz is the usual three components vector potential.
Using the so called �Lorenz gauge� the scalar �eld S is considered zero everywhere, denying its status

of a real physical entity [3]. Same consideration can be done for the �Coulomb gauge� that assign zero
value to each addendum Si. We simply do not apply any �gauge�, apart from de�ning A

□
as a harmonic

function. According to our point of view, both Lorenz and Coulomb �gauges� should be considered just
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as boundary conditions and the scalar �eld S, although not directly observable, has a gradient in space-
time with a clear physical meaning. Similar considerations are normally presented in electromagnetism
to introduce the concept of vector potential, that is a not directly measurable �eld. The components of
the geometric product ∂A

□
are shown in Table 1. An electromagnetic �eld G with seven components

emerges, composed by one scalar and six bivectors.
The set of equations from (1.2.6) to (1.2.11) can be rewritten also in the following way:

(1.2.13) Ex = c
∂At
∂x

− ∂Ax
∂t

(1.2.14) Ey = c
∂At
∂y

− ∂Ay
∂t

(1.2.15) Ez = c
∂At
∂z

− ∂Az
∂t

(1.2.16) Bx =
∂Az
∂y

− ∂Ay
∂z

(1.2.17) By = −∂Az
∂x

+
∂Ax
∂z

(1.2.18) Bz =
∂Ay
∂x

− ∂Ax
∂y

,

where

(1.2.19) E = γxEx + γyEy + γzEz = c∇At −
∂A△

∂t
,

(1.2.20) B = γxBx + γyBy + γzBz = ∇×A△.

The sum of all diagonal elements in Table 1 represents the scalar product

(1.2.21) S = ∂ ·A
□
,

whereas the sum of all extra-diagonal elements gives the six components of electromagnetic bivector F

(1.2.22) F = ∂ ∧A
□
.

Referring to the function G, it is possible to note that the �electromagnetic �eld� is characterized by
seven values: three for the electric �eld, three for the �ux density �eld and one for the scalar �eld S.

Table 2 represents the relation between the fundamental electromagnetic entities and the space-time
components of the vector potential A

□
.

Table 2. Relation between electromagnetic entities and the vector potential A
□
.

∂A
□

γxAx γyAy γzAz γtAt

γx
∂
∂x S1 Bz1 −By1 1

c · Ex1
γy

∂
∂y Bz2 S2 Bx1

1
c · Ey1

γz
∂
∂z −By2 Bx2 S3

1
c · Ez1

γt
1
c
∂
∂t

1
cEx2

1
cEy2

1
cEz2 S4
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With reference to Table 2 the electromagnetic �eld G can also be expressed as

G (x, y, z, t) = S + F = S + γxγt
Ex
c

+ γyγt
Ey
c

+ γzγt
Ez
c

+ γyγzBx − γxγzBy + γxγyBz =

= S +
1

c
Eγt + IBγt = S +

1

c
(E + IcB) γt,

(1.2.23)

where

(1.2.24) I = γxγyγzγt

is the unitary pseudoscalar and

(1.2.25) F =
1

c
Eγt + IBγt =

1

c
(E + IcB) γt.

On the other hand, with reference to Table 1, the electromagnetic �eld G can be expressed in the
following compact form

(1.2.26) G (x, y, z, t) = ∇ ·A△ − 1

c

∂At
∂t

+∇Atγt −
1

c

∂A△

∂t
γt + I∇×A△γt,

which again results in equations (1.2.12), (1.2.19) and (1.2.20) by taking (1.2.23) into account.

1.2.2. Maxwell's Equations. Now, by applying the operator ∂ to the multivector G (1.2.3) and
equating it to zero, a new expression is found, i.e.

(1.2.27) ∂G = ∂2A
□
= 0,

whose components are shown in Table 3. The equation ∂G = 0 can be seen as an extension in four dimen-
sions of the Cauchy-Riemann conditions for analytic functions of a complex (two dimensional) variable
[3, 11]. In [11] Hestenes writes: �Members of this audience will recognize □ψ0 = 0 as a generalization of
the Cauchy-Riemann equations to spacetime, so we can expect it to have a rich variety of solutions. The
problem is to pick out those solutions with physical signi�cance.�. In fact, if A

□
is harmonic then

(1.2.28) ∂2A
□
= ∇2A

□
− 1

c2
∂2A

□

∂t2
= 0,

which represents the wave equation of the four-potential and where

∂2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− 1

c2
∂2

∂t2
= ∇2 − 1

c2
∂2

∂t2
.

It should be noted that in our case, considering the scalar �eld S ̸= 0 and A
□
harmonic, (1.2.28) is

always homogeneous.

Table 3. Products ∂G = ∂
(
∂A

□

)
. γij = γiγj , γijk = γiγjγk.

∂2A
□

S γxt
1
cEx γyt

1
cEy γzt

1
cEz

γx
∂
∂x γx

∂S
∂x γt

1
c
∂Ex

∂x γxyt
1
c
∂Ey

∂x γxzt
1
c
∂Ez

∂x

γy
∂
∂y γy

∂S
∂y −γxyt 1c

∂Ex

∂y γt
1
c
∂Ey

∂y γyzt
1
c
∂Ez

∂y

γz
∂
∂z γz

∂S
∂z −γxzt 1c

∂Ex

∂z −γyzt 1c
∂Ey

∂z γt
1
c
∂Ez

∂z

γt
1
c
∂
∂t γt

1
c
∂S
∂t γx

1
c2
∂Ex

∂t γy
1
c2
∂Ey

∂t γz
1
c2
∂Ez

∂t

∂2A
□

S γyzBx −γxzBy γxyBz

γx
∂
∂x γx

∂S
∂x γxyz

∂Bx

∂x −γz ∂By

∂x γy
∂Bz

∂x

γy
∂
∂y γy

∂S
∂y γz

∂Bx

∂y γxyz
∂By

∂x −γx ∂Bz

∂y

γz
∂
∂z γz

∂S
∂z −γy ∂Bx

∂z γx
∂By

∂z γxyz
∂Bz

∂z

γt
1
c
∂
∂t γt

1
c
∂S
∂t γyzt

1
c
∂Bx

∂t −γxzt 1c
∂By

∂t γxyt
1
c
∂Bz

∂t

By collecting all common factors contained in Table 3 the following equations are derived:
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(1.2.29) γx

(
∂S

∂x
− ∂Bz

∂y
+
∂By
∂z

+
1

c2
∂Ex
∂t

)
= 0

(1.2.30) γy

(
∂Bz
∂x

+
∂S

∂y
− ∂Bx

∂z
+

1

c2
∂Ey
∂t

)
= 0

(1.2.31) γz

(
−∂By
∂x

+
∂Bx
∂y

+
∂S

∂z
+

1

c2
∂Ez
∂t

)
= 0

(1.2.32) γt
1

c

(
∂Ex
∂x

+
∂Ey
∂y

+
∂Ez
∂z

+
∂S

∂t

)
= 0

(1.2.33) γyγzγt
1

c

(
∂Ez
∂y

− ∂Ey
∂z

+
∂Bx
∂t

)
= 0

(1.2.34) γxγzγt
1

c

(
∂Ez
∂x

− ∂Ex
∂z

− ∂By
∂t

)
= 0

(1.2.35) γxγyγt
1

c

(
∂Ey
∂x

− ∂Ex
∂y

+
∂Bz
∂t

)
= 0

(1.2.36) γxγyγz

(
∂Bx
∂x

+
∂By
∂y

+
∂Bz
∂z

)
= 0.

Rearranging all equations from (1.2.29) to (1.2.36) the following are derived:

(1.2.37)
∂Bz
∂y

− ∂By
∂z

=
∂S

∂x
+

1

c2
∂Ex
∂t

(1.2.38)
∂Bx
∂z

− ∂Bz
∂x

=
∂S

∂y
+

1

c2
∂Ey
∂t

(1.2.39)
∂By
∂x

− ∂Bx
∂y

=
∂S

∂z
+

1

c2
∂Ez
∂t

(1.2.40)
∂Ex
∂x

+
∂Ey
∂y

+
∂Ez
∂z

= −∂S
∂t

(1.2.41)
∂Ez
∂y

− ∂Ey
∂z

= −∂Bx
∂t

(1.2.42)
∂Ex
∂z

− ∂Ez
∂x

= −∂By
∂t

(1.2.43)
∂Ey
∂x

− ∂Ex
∂y

= −∂Bz
∂t

(1.2.44)
∂Bx
∂x

+
∂By
∂y

+
∂Bz
∂z

= 0,

which are coincident with Maxwell's equations if

(1.2.45)
∂S

∂x
= µ0Jex = µ0

∂q

∂y∂z∂t
= µ0

∂q∂x

∂x∂y∂z∂t
= µ0ρvx

(1.2.46)
∂S

∂y
= µ0Jey = µ0

∂q

∂x∂z∂t
= µ0

∂q∂y

∂x∂y∂z∂t
= µ0ρvy
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(1.2.47)
∂S

∂z
= µ0Jez = µ0

∂q

∂x∂y∂t
= µ0

∂q∂z

∂x∂y∂z∂t
= µ0ρvz

(1.2.48)
1

c

∂S

∂t
= µ0Jet = −µ0c

∂q

∂x∂y∂z
= −µ0cρ,

where ∂q is the di�erential of a generic charge [4, 20]. Equation (1.2.48) can be also written as

(1.2.49)
∂S

∂t
= cµ0Jet = −µ0c

∂q

∂x∂y∂z
= −µ0c

2ρ = − ρ

ϵ0
.

By taking into account (1.2.45), (1.2.46), (1.2.47) and (1.2.48), the following relation holds for the current
density �eld,

(1.2.50)
1

µ0
∂S =

1

µ0

(
γx
∂S

∂x
+ γy

∂S

∂y
+ γz

∂S

∂z
+ γt

1

c

∂S

∂t

)
= J

□e,

where

J
□e = γxJex + γyJey + γzJez + γtJet = γxJex + γyJey + γzJez − γtcρ =

= J△ − γtcρ = ρ (v△ − γtc)
(1.2.51)

is the four-current vector,

(1.2.52) v
□
= γxvx + γyvy + γzvz − γtc = v△ − γtc

is a four-velocity vector and v△ is the speed in the ordinary space.
In this formulation the partial derivatives of the scalar �eld S with respect to time and space coordi-

nates can be interpreted as charge density and current density, respectively. As a matter of fact (1.2.37),
(1.2.38) and (1.2.39) represent the spatial components of Ampere's law, i.e.

(1.2.53) ∇×B = µ0J△ +
1

c2
∂E

∂t
,

where J△ = γxJex+γyJey+γzJez is the three component vector of current density, (1.2.40) is the Gauss's
law for the electric �eld

(1.2.54) ∇ ·E =
ρ

ϵ0
,

(1.2.41), (1.2.42) and (1.2.43) represent the spatial components of the Faraday-Neumann-Maxwell-Lenz
law

(1.2.55) ∇×E = −∂B
∂t

and (1.2.44) the Gauss's law for the �ux density �eld

(1.2.56) ∇ ·B = 0.

Finally, by applying the ∂· operator to (1.2.50) and setting the result to zero, the equation repre-
senting the law of electric charge conservation is obtained

(1.2.57)
1

µ0
∂ · (∂S) = ∂ · J

□e =
∂Jex
∂x

+
∂Jey
∂y

+
∂Jez
∂z

+
∂ρ

∂t
= 0.

It is important to note that the wave equation of the scalar �eld S can be deduced from the charge-current
conservation law:

(1.2.58) ∂ · (∂S) = ∂2S =
∂2S

∂x2
+
∂2S

∂y2
+
∂2S

∂z2
− 1

c2
∂2S

∂t2
= ∇2S − 1

c2
∂2S

∂t2
= 0.

Now, by applying the time derivative to (1.2.58) and remembering (1.2.49), the wave equation of a
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q

Figure 1.2.1. Helical motion of an elementary charge q moving at the speed of light,
with v2z + v2⊥ = c2.

massless charge �eld ρ
(
r

□

)
can also be deduced, i.e.

(1.2.59)
∂

∂t

(
∂2S

)
= ∂2

(
∂S

∂t

)
= ∂2

(
−µ0c

2ρ
)
= −µ0c

2∂2ρ = 0,

which gives

(1.2.60) ∂2ρ = ∇2ρ− 1

c2
∂2

∂t2
ρ = 0.

Clearly, both (1.2.58) and (1.2.60) represent, respectively, �elds (S and ρ) that must necessary propagate
at the speed of light [17, 20]. Equation (1.2.50) means also that the 4-vector current density �eld can
be derived directly from the scalar �eld S. The hypothesis of existence of scalar waves has been recently
explored at the Oak Ridge laboratories: �The new theory predicts a new charge-�uctuation-driven scalar
wave, having energy but not momentum for zero magnetic and electric �elds. The scalar wave can co-
exist with a longitudinal-electric wave, having energy and momentum. The new theory in 4-vector form
is relativistically covariant. New experimental tests are needed to con�rm this theory.� [15].

The proposed reinterpretation of Maxwell's equations in this work is in agreement with the principle of
Occam's razor: the concepts of charge and current density are not inserted �ad hoc� but are deduced from
a single more fundamental entity, the four dimensional vector potential �eld A

□

(
r

□

)
= A

□
(x, y, z, t).

In fact, a big advantage of our perspective on Maxwell's equations is the ability to simply specify
both current density and charge density distributions and then see what �elds result. Nevertheless, the
added constraint on the charge and current density seems to imply that one is no longer free to specify
charge and current density distributions at will, because this information is indeed included within the
electromagnetic four potential A

□
.

Equation (1.2.60) imposes a precise condition on charge dynamics, describing only distributions
of charge density moving in vacuum at the speed of light c. At �rst glance, this result seems to be
incompatible with experimental observations, with the usual concepts of charge and current, and with
the traditional way of working with Maxwell's equations. A skeptic might ask: �What does a light-
speed moving and massless charge �eld have to do with the electron?� In the following chapters, we
precisely derive how this light-speed moving ρ

(
r

□

)
�eld is perceived as a massive electron particle and

as a quantum mechanical wavefunction. To reach this discovery, we use nothing else than Maxwell's
equations and General Relativity.

As will be shown later, we can interpret equation (1.2.60) as a constraint for the de�nition of models
of elementary charged particles. This constraint, however, can be removed when considering macroscopic
electromagnetic systems or even the dynamics of a single elementary charge at a spatial scale greater
than the particle Compton wavelength λc and at a time scale greater than the Compton period λc

c . In
this case �static� elementary charges can be seen as charge density distributions moving at the speed of
light on a closed trajectory but with a zero average speed (this generalization would be consistent with
static charge densities, electrets, dielectrics), whereas currents can be considered as an ordered motion
of charge density distributions moving with an absolute velocity equal to the speed of light but with an
arbitrary average speed lower than c . As an example, referring to Fig. 1.2.1, the electromagnetic e�ects
generated by an elementary charge q, moving at instantaneous speed c in a helical motion of radius ≤ λc

2π
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with average velocity vz along the helix axis z and tangential velocity v⊥, can be approximated, on a
spatial scale ≫ λc and a temporal scale ≫ λc

c , to those produced by the same elementary charge q moving
at uniform velocity vz, creating the current density

(1.2.61) Jz = Jzγz ≈
q

δxδyδz

dz

dt
γz =

q

δV

dz

dt
γz = ρvzγz = ρvz,

where δV = δxδyδz ≈ λ3c . In this view and at a macroscopic level the here proposed new interpretation of
Maxwell's equations remains compatible with the traditional way of working with them, i.e. by assigning
the sources and determining, as a consequence, both the electric and the �ux density (magnetic) �eld.

The new formulation of Maxwell's equations expressed by (1.2.27) is quite similar to the Dirac-
Hestenes equation for m = 0 (Weyl equation). In all cases the solution is a spinor �eld. A spinor is
a mathematical object that in space-time algebra is simply a multivector of even grade components.
The motion of a massless charge that moves at speed of light can be described using a composition of a
rotation in the γxγy plane followed by a scaled hyperbolic rotation in the γzγt plane and can be encoded
in real Cl3,1 algebra with a single spinor.

At this point, we encourage the reader by an interesting sentence of P. A. M. Dirac. In fact, in his
Nobel lecture [6], held in 1933, Dirac proposed an electron model in which a charge moves at the speed
of light: �It is found that an electron which seems to us to be moving slowly, must actually have a very
high frequency oscillatory motion of small amplitude superposed on the regular motion which appears to
us. As a result of this oscillatory motion, the velocity of the electron at any time equals the velocity of
light.�.

1.3. Properties of the Electromagnetic Field

In this section, the main properties of the electromagnetic �eld will be presented and discussed by
means of Cl3,1 Cli�ord algebra.

1.3.1. Derivation of Maxwell's Equations from Lagrangian Density. Maxwell's equations
can be derived considering the following Lagrangian density, in form of a composition of a scalar and a
pseudoscalar part:

L =
1

2µ0
∂A

□
∂̃A

□
=

1

2µ0
GG̃ =

1

2µ0
∥G∥2 =

1

2µ0
(S + F ) (S − F ) =

1

2µ0

(
S2 − F 2

)
=

=
1

2µ0

(
−E

2

c2
+B2 + S2 − 2

c
IE ·B

)
,

(1.3.1)

where, bearing (1.2.25) in mind,

(1.3.2) F =
1

c
Eγt + IBγt =

1

c
(E + IcB) γt

is the bivector part of the electromagnetic �eld and ˜ represents the Cli�ord reversion operator, as de�ned
in the Mathematical Preliminaries chapter. Essentially, equation 1.3.1 equates Lagrangian density with
the electromagnetic �eld's norm-square.

Expanding (1.3.1), and taking equations from (1.2.12) to (1.2.18) into account, we obtain the La-
grangian density as a function of the derivatives of the electromagnetic four-potential components, i.e.

L =
1

2µ0

{
−
(
∂At
∂x

− 1

c

∂Ax
∂t

)2

−
(
∂At
∂y

− 1

c

∂Ay
∂t

)2

−
(
∂At
∂z

− 1

c

∂Az
∂t

)2

+

+

(
∂Az
∂y

− ∂Ay
∂z

)2

+

(
∂Ax
∂z

− ∂Az
∂x

)2

+

(
∂Ay
∂x

− ∂Ax
∂y

)2

+

+

(
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

− 1

c

∂At
∂t

)2

+

− 2I

[(
∂At
∂x

− 1

c

∂Ax
∂t

)(
∂Az
∂y

− ∂Ay
∂z

)
+

(
∂At
∂y

− 1

c

∂Ay
∂t

)(
∂Ax
∂z

− ∂Az
∂x

)
+

+

(
∂At
∂z

− 1

c

∂Az
∂t

)(
∂Ay
∂x

− ∂Ax
∂y

)]}
.

(1.3.3)
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In Cl3,1 algebra the Euler-Lagrange equations can be expressed, considering as variables the elec-
tromagnetic four-potential components Ax(x, y, z, t), Ay(x, y, z, t), Az(x, y, z, t) and At(x, y, z, t), in the
following way:

(1.3.4)
∑

j=x,y,z,t

 ∑
i=x,y,z,t

γi
∂

∂i

 ∂L

γiγj∂
(
∂Aj

∂i

)
− ∂L

γj∂Aj

 = 0

which reduces itself to

(1.3.5)
∑

j=x,y,z,t

 ∑
i=x,y,z,t

γi
∂

∂i

 ∂L

γiγj∂
(
∂Aj

∂i

)
 = 0,

considering that in this case

(1.3.6)
∑

j=x,y,z,t

(
∂L

γj∂Aj

)
= 0,

because in (1.3.3) only the derivative terms of the four-potential (
∂Aj

∂i ) appear. By expanding (1.3.5), for
example with j = t, we achieve, after some trivial calculation steps,

−γt
∂L

∂At
= −γt

∂

∂x

∂L

∂
(
∂At

∂x

) − γt
∂

∂y

∂L

∂
(
∂At

∂y

) − γt
∂

∂z

∂L

∂
(
∂At

∂z

) − γt
∂

∂t

∂L

∂
(
∂At

∂t

) =

= γt
1

µ0

(
1

c

∂Ex
∂x

+ I
∂Bx
∂x

+
1

c

∂Ey
∂y

+ I
∂By
∂y

+
1

c

∂Ez
∂z

+ I
∂Bz
∂z

+
1

c

∂S

∂t

)
= 0,

(1.3.7)

and this equation returns Gauss's laws for the electric �eld (see eq. (1.2.32)) and for the �ux density �eld
(see eq. (1.2.36)), respectively:

γt
1

c

(
∂Ex
∂x

+
∂Ey
∂y

+
∂Ez
∂z

+
∂S

∂t

)
= 0,

γxγyγz

(
∂Bx
∂x

+
∂By
∂y

+
∂Bz
∂z

)
= 0.

Now, if we expand (1.3.5) with j = x, we obtain

γx
∂L

∂Ax
= γx

∂

∂x

∂L

∂
(
∂Ax

∂x

) + γx
∂

∂y

∂L

∂
(
∂Ax

∂y

) + γx
∂

∂z

∂L

∂
(
∂Ax

∂z

) + γx
∂

∂t

∂L

∂
(
∂Ax

∂t

) =

= γx
1

µ0

(
∂S

∂x
− ∂Bz

∂y
+
I

c

∂Ez
∂y

+
∂By
∂z

− I

c

∂Ey
∂z

+
1

c2
∂Ex
∂t

+
I

c

∂Bx
∂t

)
= 0.

(1.3.8)

Equation (1.3.8) gives (1.2.29) and (1.2.33):

γx

(
∂By
∂z

− ∂Bz
∂y

+
∂S

∂x
+

1

c2
∂Ex
∂t

)
= 0,

γyγzγt
1

c

(
∂Ez
∂y

− ∂Ey
∂z

+
∂Bx
∂t

)
= 0.

If we carry on the above procedures with j = y and j = z the other remaining components of Maxwell's
equation can be determined, i.e (1.2.30), (1.2.34), (1.2.31) and (1.2.35):

γy
∂L

∂Ay
= γy

∂

∂x

∂L

∂
(
∂Ay

∂x

) + γy
∂

∂y

∂L

∂
(
∂Ay

∂y

) + γy
∂

∂z

∂L

∂
(
∂Ay

∂z

) + γy
∂

∂t

∂L

∂
(
∂Ay

∂t

) =

= γy
1

µ0

(
∂Bz
∂x

− I

c

∂Ez
∂x

+
∂S

∂y
− ∂Bx

∂z
+
I

c

∂Ex
∂z

+
1

c2
∂Ey
∂t

+
I

c

∂By
∂t

)
= 0,

(1.3.9)
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γz
∂L

∂Az
= γz

∂

∂x

∂L

∂
(
∂Az

∂x

) + γz
∂

∂y

∂L

∂
(
∂Az

∂y

) + γz
∂

∂z

∂L

∂
(
∂Az

∂z

) + γz
∂

∂t

∂L

∂
(
∂Az

∂t

) =

= γz
1

µ0

(
−∂By
∂x

+
I

c

∂Ey
∂x

+
∂Bx
∂y

− I

c

∂Ex
∂y

+
∂S

∂z
+

1

c2
∂Ez
∂t

+
I

c

∂Bz
∂t

)
= 0,

(1.3.10)

that give, as expected, respectively

γy

(
∂Bz
∂x

+
∂S

∂y
− ∂Bx

∂z
+

1

c2
∂Ey
∂t

)
= 0,

γxγzγt
1

c

(
∂Ez
∂x

− ∂Ex
∂z

− ∂By
∂t

)
= 0,

γz

(
∂Bx
∂y

+
∂S

∂z
− ∂By

∂x
+

1

c2
∂Ez
∂t

)
= 0,

γxγyγt
1

c

(
∂Ey
∂x

− ∂Ex
∂y

+
∂Bz
∂t

)
= 0.

By analyzing the above reported equations it is possible to reach some conclusions. First of all the
Lagrangian density, as de�ned in (1.3.1), can be divided in the sum of two parts

(1.3.11) L = Lfield + Lint.

The �rst part

(1.3.12) Lfield =
1

2µ0

(
−E

2

c2
+B2

)
= − 1

2µ0
(F · F )

represents the ��eld part� of the Lagrangian density, as known in literature, and the second

(1.3.13) Lint =
1

2µ0

(
S2 − 2

c
IE ·B

)
represents the �interaction term� of the Lagrangian density, that takes the interaction of the electromag-
netic �eld with the sources into account, remembering, in addition, that the derivatives of the scalar �eld
S, with respect to the four dimensional space coordinates x, y, z and t, are bounded respectively to the
sources Jex, Jey, Jez and Jet = −cρ (see eq. (1.2.50)). Indeed, by deriving only the interaction terms of

the Lagrangian density with respect to the four-potential, i.e. by performing the operation ∂Lint

∂Aj
, it is

possible to derive the term J
□e ·A□

. In fact, for the component along γt we �nd

−γt
∂Lint
∂At

= −γt
∂

∂x

∂Lint

∂
(
∂At

∂x

) − γt
∂

∂y

∂Lint

∂
(
∂At

∂y

) − γt
∂

∂z

∂Lint

∂
(
∂At

∂z

) − γt
∂

∂t

∂Lint

∂
(
∂At

∂t

) =

=
γt
µ0

(
I
∂Bx
∂x

+ I
∂By
∂y

+ I
∂Bz
∂z

+
1

c

∂S

∂t

)
=
γt
µ0

(
I∇ ·B +

1

c

∂S

∂t

)
=

=
γt
µ0c

∂S

∂t
= γtJet = −γtcρ.

(1.3.14)

Integration of (1.3.14) yields

(1.3.15) Lint|t =
ˆ
∂Lint
∂At

dAt =

ˆ
1

µ0c

∂S

∂t
dAt =

1

µ0c

∂S

∂t
At = − 1

µ0
µ0cρAt = −cρAt = JetAt.

For the component along γx we �nd

γx
∂Lint
∂Ax

= γx
∂

∂x

∂Lint

∂
(
∂Ax

∂x

) + γx
∂

∂y

∂Lint

∂
(
∂Ax

∂y

) + γx
∂

∂z

∂Lint

∂
(
∂Ax

∂z

) + γx
∂

∂t

∂Lint

∂
(
∂Ax

∂t

) =

=
γx
µ0

(
∂S

∂x
+
I

c

∂Ez
∂y

− I

c

∂Ey
∂z

+
I

c

∂Bx
∂t

)
=
γx
µ0

∂S

∂x
= γxJex.

(1.3.16)

Integration of (1.3.16) yields
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(1.3.17) Lint|x =

ˆ (
∂Lint
∂Ax

)
dAx =

ˆ
1

µ0

∂S

∂x
dAx =

1

µ0

∂S

∂x
Ax = JexAx.

The same procedure is clearly valid also for the components in γy and γz. Finally, by integration of
(1.3.6), we get the Lagrangian density interaction term as

(1.3.18) Lint =
∑

j=x,y,z,t

ˆ (
∂Lint
∂Aj

)
dAj = JexAx + JeyAy + JezAz − cρAt = J

□e ·A□
,

which is the usual �source� term that is added in traditional Lagrangian theory for classical electricity
and magnetism in order to obtain the complete set of Maxwell's equations [5, 7, 20]. The scalar product
J

□e ·A□
has a dimension of energy per volume (J ·m−3); in particular, the contribution of the spatial

components of vectors J
□e andA

□
(the scalar product J△ ·A△) can be considered as the speci�c �kinetic�

energy of the electromagnetic �eld, whereas the term JetAt = −cρAt the �potential� energy. By virtue
of (1.3.13), (1.3.18) becomes

(1.3.19) Lint =
1

2µ0

(
S2 − 2

c
IE ·B

)
= J

□e ·A□
.

By inspection of (1.3.14) and (1.3.16), and generalizing, it is possible to de�ne the four-current vector
J

□e from the interaction Lagrangian term:

∑
j=x,y,z,t

(
∂Lint
γj∂Aj

)
= γx

∂Lint
∂Ax

+ γy
∂Lint
∂Ay

+ γz
∂Lint
∂Az

− γt
∂Lint
∂At

=

= γxJex + γyJey + γzJez + γtJet = J
□e.

(1.3.20)

and, again, by virtue of the Noether's theorem, the law of current and charge conservation

(1.3.21) ∂ ·

 ∑
j=x,y,z,t

(
∂Lint
γj∂Aj

) = ∂ · J
□e = 0,

which returns, consequently, the wave equations (1.2.58) and (1.2.60), respectively.
As can be seen the de�nition of the electromagnetic �eld G is complete and it includes itself the

information of both action and interaction, without the need of any additional term: this is in full
accordance with the principle of Occam's razor.

Thanks to the Cl3,1 Cli�ord algebra the Euler-Lagrange equations can be conveniently de�ned in in
a very compact form:

(1.3.22) ∂

(
∂L

∂
(
∂ ∧A

□

))− ∂L

∂A
□

= ∂

(
∂L

∂F

)
− ∂L

∂A
□

= 0,

where, now, the scalar Lagrangian density is

(1.3.23) L = Lfield + Lint = − 1

2µ0
F · F + J

□e ·A□
.

Substituting (1.3.23) in (1.3.22) one can achieve directly Maxwell's equations in Cl3,1 in the form
shown in the previous sections (see eq. (1.2.27)), i.e.

(1.3.24) ∂

∂
(
− 1

2µ0
F · F + J

□e ·A□

)
∂F

−
∂
(
− 1

2µ0
F · F + J

□e ·A□

)
∂A

□

= − 1

µ0
∂F − J

□e = 0,

which yields

(1.3.25) ∂F + µ0J□e = ∂F + ∂S = ∂ (F + S) = ∂G = 0.

24



1.3.2. Energy of the Electromagnetic Field. The light-like energy-momentum density vector
of the �eld G can be represented by a rotation of the base vector γt :

w =
1

2µ0

(
GγtG̃

)
G = S + F = S +

1

c
(E + IcB) γt

Gγt = Sγt + F γt = Sγt −
1

c
(E + IcB)

w =
1

2µ0

[
Sγt −

1

c
(E + IcB)

] [
S − 1

c
(E + IcB) γt

]

w =
S2

2µ0
γt +

ϵ0E
2

2
γt +

B2

2µ0
γt −

1

cµ0
IE ∧Bγt +

SE

cµ0

(1.3.26) w =

(
S2

2µ0
+
ϵ0E

2

2
+

B2

2µ0

)
γt −

1

cµ0
(E ×B − SE)

Using natural units, the above equation takes the following form:

(1.3.27)

[
w =

1

4π

(
1

2

(
S2 + E2 +B2

)
γt − (E ×B − SE)

)]
NU

w = (ws + we + wm) γt −
1

c
·S,

where ws =
S2

2µ0
= J

□e ·A□
, we = ϵ0

E2

2 and wm = B2

2µ0
are the speci�c energies of the scalar, the electric

and the magnetic �ux density �elds, and where

(1.3.28) S =
1

µ0
(E ×B − SE)

is the generalized Poynting vector. It contains the usual E × B term, regardless of the scalar �eld
presence. The poynting vector's sign depends on the �eld polarization type.

1.3.3. Electric Charge, Antimatter and Time Direction. R. Feynman proposed to interpret
the positron (a particle which is identical to the electron but with a positive charge) as an electron
traveling back in time [8, 9]. Such an interpretation seems to be perfectly compatible with the de�nition
of electric charge density given in (1.2.48):

(1.3.29)
∂S

∂t
=

−ρ
ϵ0
.

By multiplying both sides of (1.3.29) by -1 we obtain

−∂S
∂t

=
ρ

ϵ0
or, equivalently

(1.3.30)
∂S

∂(−t)
=

ρ

ϵ0
.

However, traveling back in time is unphysical. Analogously, it can be shown that the Dirac equation's
negative energy solutions correspond to a reversal of time direction, which is also unphysical.

The obvious positron solution is to reverse the sign of S, while time keeps moving forward in the
positive direction. The positron then has positive charge and positive energy. The positron's positive
energy is experimentally measured: electron-positron annihilation experiments show that 2 · 511 keV
energy is radiated away.
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1.3.4. Magnetic Charges and Currents. Starting from an hypothetical eight component �vec-
tor potential� that includes the four pseudovectors (Trivectors) T of space-time algebra, symmetrical
Maxwell's equations emerge. This new set of equations now include the magnetic charge and magnetic
current densities that are the time and spatial derivatives of a pseudoscalar �eld P . By considering (1.2.1)
and the four pseudovectors de�ned as

(1.3.31) T = γyγzγtTx + γxγzγtTy + γxγyγtTz + γxγyγzTt

a new vector potential can be de�ned as

(1.3.32) A′ = γxAx + γyAy + γzAz + γtAt + γyγzγtTx + γxγzγtTy + γxγyγtTz + γxγyγzTt

from which we obtain

(1.3.33) ∂(A′) = ∂
(
A

□
+ T

)
= S + F + P.

Using SI units and following the same procedure as shown in Section 1.2 we can write:

S =
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

− 1

c

∂At
∂t

γxγt
1

c
Ex = γxγt

(
∂At
∂x

− ∂Tz
∂y

− ∂Ty
∂z

− 1

c

∂Ax
∂t

)
γyγt

1

c
Ey = γyγt

(
∂Tz
∂x

+
∂At
∂y

− ∂Tx
∂z

− 1

c

∂Ay
∂t

)
γzγt

1

c
Ez = γzγt

(
∂Ty
∂x

+
∂Tx
∂y

+
∂At
∂z

− 1

c

∂Az
∂t

)
γxγyγzγtP = γxγyγzγt

(
∂Tx
∂x

− ∂Ty
∂y

+
∂Tz
∂z

− 1

c

∂Tt
∂t

)
γyγzBx = γyγz

(
∂Tt
∂x

+
∂Az
∂y

− ∂Ay
∂z

− 1

c

∂Tx
∂t

)
γxγzBy = γxγz

(
−∂Az
∂x

+
∂Tt
∂y

+
∂Ax
∂z

+
1

c

∂Ty
∂t

)
γxγyBz = γxγy

(
∂Ay
∂x

− ∂Ax
∂y

+
∂Tt
∂z

− 1

c

∂Tz
∂t

)
.

By applying again the ∂ operator to (1.3.33) and equating to zero:

(1.3.34) ∂2A′ = ∂ (S + F + P ) = 0.

Here

(1.3.35) ∂F = −∂S − ∂P = µ0J□e +
1

ϵ0
J

□m,

where J
□e is the four-current as de�ned in (1.2.50), J

□m = γxJmx+ γyJmy + γzJmz + γtJmt = γxJmx+

γyJmy + γzJmz − γt
1
cρm is the magnetic four-current vector and ρm the magnetic charge. By carrying

out all calculation in (1.3.34) the following set of equations is obtained:

γx

(
∂S

∂x
− ∂Bz

∂y
+
∂By
∂z

+
1

c2
∂Ex
∂t

)
= 0

γy

(
∂Bz
∂x

+
∂S

∂y
− ∂Bx

∂z
+

1

c2
∂Ey
∂t

)
= 0

γz

(
−∂By
∂x

+
∂Bx
∂y

+
∂S

∂z
+

1

c2
∂Ez
∂t

)
= 0

γt
1

c

(
∂Ex
∂x

+
∂Ey
∂y

+
∂Ez
∂z

+
∂S

∂t

)
= 0
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γyγzγt
1

c

(
∂P

∂x
+
∂Ez
∂y

− ∂Ey
∂z

+
∂Bx
∂t

)
= 0

γxγzγt
1

c

(
∂Ez
∂x

− ∂P

∂y
− ∂Ex

∂z
− ∂By

∂t

)
= 0

γxγyγt
1

c

(
∂Ey
∂x

− ∂Ex
∂y

+
∂P

∂z
+
∂Bz
∂t

)
= 0

γxγyγz

(
∂Bx
∂x

+
∂By
∂y

+
∂Bz
∂z

+
∂P

∂t

)
= 0.

This set of equations represents the symmetrical Maxwell's equations considering the hypothesis of ex-
isting magnetic currents and charges. This hypothesis was experimentally proven by several independent
experiments, which we discuss in a later chapter on magnetic monopoles.

1.4. Conclusions

Simplicity is an important and concrete value in scienti�c research. Connections between very dif-
ferent concepts in physics can be evidenced if we use the language of geometric algebra. The application
of Occam's Razor principle to Maxwell's equations highlights some essential concepts:

(1) Cli�ord algebra is by far the most appropriate, simple and intuitive mathematical language for
encoding in general the laws of physics and here, particularly, for the laws of electromagnetism;

(2) a scalar �eld derives from the de�nition of �harmonic� electromagnetic four-potential and is at
the origin of charges and currents;

(3) the charge density derived from the scalar �eld follows the wave equation with a propagation
speed equal to the speed of light.

In particular, the important element emerging from the present work is that (1.2.60) imposes a precise
condition on charge dynamics, describing distributions of charge density moving in vacuum at the speed
of light.

In the model proposed here, the added constraint on the charge and current density seems to im-
ply that one is no longer free to specify charge and current density distributions at will, because this
information is indeed included within the de�nition of the four-potential A

□
. However, this constraint

can be removed when considering macroscopic electromagnetic systems or even the dynamics of a single
elementary charge at a spatial scale greater than the particle Compton wavelength λc and at a time scale
greater than the Compton period λc

c . In this case static elementary charges can be visualized as charge
density distributions moving at the speed of light on a closed trajectory but with a zero average speed
(this generalization would be consistent with static charge densities, dielectrics), whereas currents can be
considered as an ordered motion of charge density distributions moving with an absolute velocity equal
to the speed of light but with an arbitrary absolute average speed lower than c. This observation favors
a pure electromagnetic model of elementary particles based on a particular Zitterbewegung interpretation
of quantum mechanics [10, 12]. Therefore, the free electron, and perhaps all other elementary charged
particles, can be viewed as a charge distribution that rotates at the speed of light along a circumference
whose length is equal to its Compton wavelength [18].

Finally, it has been demonstrated that Maxwell's equations can be explicitly derived in a simple way
directly from a Lagrangian density of the electromagnetic bivector and the scalar �eld. An interesting
consequence is also that the speci�c energy of the scalar �eld is deeply connected to the interaction term
of the Lagrangian density and, therefore, both to the electromagnetic four-potential and the four-current
density.
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CHAPTER 2

The self-stabilizing electron wave

Andras Kovacs[1]

[1] ExaFuse. E-mail: andras.kovacs@broadbit.com

2.1. The electromagnetic wave that generates the quantum mechanical wave

�According to our present conceptions the elementary particles of matter are, in their
essence, nothing else than condensations of the electromagnetic �eld� Einstein in 1920

This chapter serves as a bridge between the improved understanding of Maxwell's equation, which was
developed in chapter 1, and our study of the electron's particle aspect in the following chapters. With the
emergence of quantum mechanics in the early 20th century, it has become recognized that the electron is
some kind of a wave. The electron's wave aspect is very dramatically demonstrated in electron double-slit
experiments, where the observed interference pattern proves that the electron passes through both slits
simultaneously, despite their macroscopic separation.

Historically, quantum mechanics has been established over a set of experimentally motivated postu-
lates. This set of postulates includes also paradoxical properties, such as the instantaneous wavefunction
collapse or the intrinsic electron spin. An intense philosophical debate ensued over the past 100 years
regarding the physical interpretation of these postulates. Einstein, Schrödinger, and Dirac were of the
opinion that the electron comprises some kind of entrapped electromagnetic wave. At that time, attempts
to model the electron as an electromagnetic wave were not successful. Therefore, since the mid-20th

century, the quantum mechanical wavefunction has been taken as the starting point for any electron
discussion, and most scientists abandoned exploring the relationship between quantum mechanical and
electromagnetic waves. Our goal is to progress beyond this 20th century detour, and to develop a proper
�eld theory that clari�es the electromagnetic wave nature of an electron. To progress towards this goal,
we start by considering how the electron's wavefunction is generated.

Consider an electron moving at speed v. In relation to light-speed, its speed is characterized by

β = v
c , γL =

(
1− β2

)− 1
2 and rapidity w de�ned as γL = coshw. It follows that cosh2 w − sinh2 w = 1,

tanhw = β, and sinhw = γLβ.
A relativistic boost rotates the time and space axes into each other according to the following hyper-

bolic rotation matrix: (
ct′

x′

)
=

(
coshw − sinhw
− sinhw coshw

)(
ct
x

)
Therefore, the time-wise Zitterbewegung wave evolution of the rest frame acquires a spatial oscillation

component in the boosted reference frame. Speci�cally, the Zitterbewegung frequency of the rest frame

is ω
2π = m0c

2

h , and the corresponding wavenumber in the boosted frame is:

k

2π
=

ω

2π

sinhw

c
Evaluating the right side of the above equation, we obtain:

k

2π
=
m0c

2

h

γLv

c2

Rearranging the above equation, we �nally obtain:

ℏk = (γLm0) v = mv = pkinetic

We recognize the above result as the basic postulate of quantum mechanics. However, it is no longer
a postulate in our case: the appearing quantum mechanical wave is simply the Lorentz transformed
component of the electron's Zitterbewegung oscillation. The next step is to understand what comprises
the Zitterbewegung wave.
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2.2. The longitudinal electromagnetic wave that carries the Zitterbewegung current

The electron is found where its current density J
□
is non-zero. How could this Zitterbewegung

current density be an electromagnetic wave? We showed shown via equation 1.3.19 that J
□
· A

□
is

equivalent to the electromagnetic 1
2µ0

(
S2 − 2

cIE ·B
)
expression.

Let us �nd such a wave solution to Maxwell's equation that its Lagrangian density is given by the
1

2µ0

(
S2 − 2

cIE ·B
)
expression. Here, the E ·B term indicates that the electric and magnetic �elds are

parallel. The gaugeless Maxwell equation is simply ∂2A
□

= 0, and we look for its longitudinal wave
solutions. One trivial solution transforms electric and scalar �eld energies into each other, with the
electric �eld pointing along the direction of propagation. For a longitudinal wave traveling along the z
direction, the trivial longitudinal solution is:

Ez = E0 sin (ωt− kz) , S = S0 sin (ωt− kz)

where S0 = E0 in Natural units, and the wave is propagating at the speed of light along the z direction.
An other trivial solution transforms magnetic and scalar �eld energies into each other, with the

magnetic �eld pointing along the direction of propagation. For a longitudinal wave traveling along the z
direction, the trivial longitudinal solution is:

Bz = B0 cos (ωt− kz) , S = IS0 cos (ωt− kz)

where I is the Cli�ord pseudo-scalar, S0 = B0 in Natural units, and the wave is propagating at the speed
of light into the z direction.

Recall from chapter 1 that the complete electromagnetic Lagrangian density is:

L =
1

2µ0

(
−E

2

c2
+B2 + S2 − 2

c
IE ·B

)
We note that the trivial transversal wave solution corresponds to −E2

c2 +B2 = 0. The above described

trivial longitudinal solutions correspond to either −E2

c2 + S2 = 0 with no magnetic �eld or B2 + S2 = 0
with no electric �eld. Since electromagnetic wave solutions can be superposed, we can combine the trivial
longitudinal wave solutions. Adding the above-written electric and magnetic wave expressions, we get a
longitudinal wave where the out-of-phase electric and magnetic �eld energies rotate into each other with
scalar �eld mediation.

Let us now consider adding the trivial electric and magnetic longitudinal waves with the same
sin (ωt− kz) phase. The amplitude of the scalar wave part becomes S2

0 (1 + I)2 = S2
0 · 2I. Multi-

plying the in-phase electric and magnetic �elds gives a combined wave amplitude of E0B0 = S2
0 . Clearly,

we have found the longitudinal wave solution that corresponds to S2− 2
cIE ·B = 0, with parallel oriented

electric and magnetic �elds. In natural units, the longitudinal wave solution corresponding to J
□
·A

□
is:

(2.2.1)

{
Ez = E0 sin (ωt− kz) , Bz = ±B0 sin (ωt− kz)

S = S0 sin (ωt− kz)± IS0 sin (ωt− kz)

}
where I is the Cli�ord pseudo-scalar, S0 = E0 = B0 in Natural units, and this electric current-carrying
wave is propagating at the speed of light into the z direction. In this simple plane wave case the electric
and magnetic �elds have no x, y components. The reason why this longitudinal wave solution has not
been recognized in the past is its non-zero scalar �eld component.

At last, we can model the electron's Zitterbewegung current as a proper electromagnetic wave. Since
electron's Zitterbewegung current forms a circulating loop, its mathematical formulation is more complex
than the linear solution. Nevertheless, the identi�ed longitudinal wave concept remains the same.

For an ordinary transversal wave, the associated wave energy is calculated by integrating the �eld
energy density within the given wave. However, the longitudinal wave that comprises electric charge and
current density, which induces electric and magnetic �elds around the Zitterbewegung current loop. The
energy associated energy with these external �elds is de�ned by the vector potential experienced by the
Zitterbewegung current loop. As will be shown in the following chapter, the associated wave energy is
given by the

˝
V
JAdV expression, which integrates over the volume where this longitudinal wave is

present.
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2.3. The electromagnetic formulation of quantum mechanical action

The evolution of a quantum mechanical electron wave is captured by the well-known Schrödinger
equation:

(2.3.1) iℏ
∂ψ

∂t
= − ℏ2

2m

∂2ψ

∂x2
+ V (x) · ψ

Expressing the wavefunction in the ψ = eiS /ℏ harmonic wave form, the Schrödinger equation be-
comes:

(2.3.2) −∂S

∂t
= − iℏ

2m

∂2S

∂x2
+

1

2m

(
∂S

∂x

)2

+ V (x)

When we neglect the �rst term on the right hand side, the above equation reduces exactly to the

classical Hamilton�Jacobi equation, where S is the classical action and 1
2m

(
∂S
∂x

)2
+ V (x) is the Hamil-

tonian giving the electron energy. With this formulation, we can see right away that quantum mechanics
converges to classical mechanics in the ℏ → 0 limit.

In equation 2.3.2, the − iℏ
2m

∂2S
∂x2 term generates the interferences of the electron wavefunction. Let

us take an analogy from optics: when observed from far away, light travels in the form of rays, whose
trajectory is de�ned by the local propagation speed. That is the classic trajectory of light rays. Only
when we look close enough, we see that light propagation is in fact governed by Maxwell's equation, and
see the wave interference patterns emerging around slits or obstacles.

Figure 2.3.1. An illustration of the path integral formulation of quantum mechanics.
The �gure shows �ve of the in�nitely many paths available for an electron wave to move
from point A at time t to point B at time t'. An action S can be calculated for each
path.

The above analysis demonstrates that the electron wavefunction ψ is determined by a quantum
mechanical action function S , and the ψ = eiS /ℏ formula expresses the relationship between them.
While the classical electron movement follows a single trajectory, the movement of a quantum mechanical
electron wave can be treated as simultaneous propagation over a very large number of di�erent trajectories.
This methodology is referred to as the path integral formulation of quantum mechanics; it was �rstly
formulated by Dirac and then further developed by Feynman. The overall electron propagation probability
between points A and B is obtained by calculating and summing up the eiS /ℏ factors for each possible
path. Some exemplary paths are illustrated in �gure 2.3.1.

To properly understand how a longitudinal electromagnetic wave generates the quantum mechan-
ical wave, one must �nd the corresponding electromagnetic formulation of S . This important task is
accomplished in chapter 4; starting from the above-discussed J

□
· A

□
formulation of the longitudinal

electromagnetic wave, the following S formulation is obtained:

(2.3.3) S =

ˆ
(eA · c− eV ) dt

where e is the elementary charge, (V γt,A) ≡ A
□
is the vector potential experienced by the charge-

carrying longitudinal wave, c is the speed vector of the longitudinal wave, and dt is the elapsed in�nites-
imal time along its path. In this context, A

□
is the sum of the externally applied and electron-internal

vector potential �elds. The beauty of this action formula is that it is valid from femtometer-scale all the
way to macroscopic scale, and hence it describes the electron wave's evolution at a more fundamental
level than the quantum mechanical wavefunction. In other words, starting from the J

□
and A

□
functions
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we can calculate ψ, but starting from ψ we cannot calculate the picometer-scale Zitterbewegung structure
of J

□
and A

□
. Besides establishing a deeper understanding of the electron wave, the electromagnetic

formulation of S becomes relevant when electron spin interactions play a stabilizing role. Chapter 4
gives some examples of electron interaction phenomena where equation 2.3.3 provides new insights.

In essence, we may now distinguish three regimes of electron description:

(1) The classical regime, where the interferences of the electron wavefunction are negligible. This
regime corresponds to the ℏ → 0 limit of equation 2.3.2.

(2) The quantum mechanical regime, where the presence of electron wavefunction is relevant, but
spin interactions can be neglected. This regime corresponds to equation 2.3.2, with S remaining
a scalar parameter.

(3) The spin interaction regime, where the electron's wavefunction and spin interactions are both
relevant. This regime corresponds to equation 2.3.2, with S being de�ned by equation 2.3.3.

Our work is of course not the �rst one to address electron spin interactions; up to now spin interactions
have been evaluated mainly via the Dirac equation. One may then wonder how the Dirac equation relates
to longitudinal electromagnetic waves. There must be a deep connection, after all Schrödinger identi�ed
the Zitterbewegung phenomenon by studying the Dirac equation. This topic is explored in chapter 5
and section 7.4, where we unpack the true meaning of the energy-momentum eigenvalues encoded by the
Dirac equation.

Lastly, let us consider the minimization condition expressed in equation 2.3.3. Take an analogy from
optics; a light ray propagates over a path that minimizes the travel time between points A and B. This
travel time minimization condition is expressed via the following action:

(2.3.4) Soptics =

ˆ B

A

n
ds

c
=

ˆ
n · dt

where ds is in�nitesimal displacement, and n is the index of light refraction along the trajectory; this
index may vary from point to point. Here, n is a macroscopic parameter that is determined by the
underlying atomic structure. Light rays propagate paths that minimize the integral of n.

Similarly, the elementary charge value e is a �macroscopic� parameter in the context of equation
2.3.3; it is generated by the underlying longitudinal wave structure. This underlying structure shall be
determined in chapter 3. The eA · c term of equation 2.3.3 represents magnetic �eld induction, and
the eV term represents electric �eld induction. In any electromagnetic wave, the magnetic and electric
�eld inductions are in balance. The minimization of (eA · c− eV ) thus represents the stable condition
of electromagnetic wave propagation. An electron encounters disturbances to this stable condition along
its path. For example, its electric �eld is disturbed as it approaches a highly charged nucleus. The
minimized (eA · c− eV ) condition means that the electron �nds such stable states that minimize the
averaged disturbances to its electromagnetic wave induction. This is the essential feature of a self-
stabilizing electromagnetic wave.

2.4. The electron state before and during quantum mechanical state transitions

We use quantum mechanical state transition examples to further illustrate electrons' electromagnetic
wave aspect. For an elementary particle to emit electromagnetic wave energy at the angular frequency
ω, its charge must be oscillating at this frequency. This statement is a direct consequence of Maxwell's
equation, and therefore it remains true under any circumstance. Since the kinetic oscillation of charges
is described by the quantum mechanical wavefunction Ψ , light-matter interaction is a process between
an electromagnetic angular frequency ω and the same kinetic oscillation frequency.

One the one hand, it is a direct consequence of Maxwell's equation that a quantum mechanical
state transition process must last for a certain duration and must involve the transient presence of an
ω angular frequency charge oscillation. On the other hand, the current axioms of quantum mechanics
completely bypass Maxwell's equation. These axioms state that a quantum mechanical state transition is
a timewise discontinuous �jump� process, which releases a so-called �photon particle�. This hypothetical
photon particle is characterized by the frequency ω, which is presumably never present in the photon-
emitting particle wavefunction. Such polar opposite perspective makes one wonder about the origin of the
�photon particle� concept, which dates back to more than 100 years ago. In his �rst quantum mechanics
related publication, Einstein was trying to explain the experimental observation that the probability
of a quantum mechanical state transition depends on the frequency of incident light, and not on its
amplitude. It has been generally assumed in those days that light amplitude plays no role; it was only
much later discovered that even low-frequency light causes quantum mechanical state transition when
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the light amplitude is su�ciently high [2]. Regrettably, Einstein chose to go against the historic trend
of exploring electromagnetic waves, and introduced the notion of �light particles� which are presently
referred to as photons. At that time, most physicists believed in the reality of �aether particles� which
supposedly permeate all space. In that pioneering era, the notion of a second type of light carrying
particle appeared to be the simplest explanation of experiments. While it was mathematically clear
from the start that a single-frequency electromagnetic emission implies an in�nite wavefunction size of
the hypothetical �photon particle�, Einstein's contemporaries chose to ignore this mathematical paradox.
Bohr complemented Einstein's postulate by an additional axiom stating that the release of a photon
particle coincides with an abrupt jump between quantum mechanical states. But some years later Einstein
was taken aback by the paradoxical implications of these axioms, and then fought against them till the
end of his career. He felt that there is some hidden reality behind quantum mechanics, which is occulted
by all these axioms. Schrödinger was also unhappy with Bohr's quantum jump postulate, and preferred
to seek a proper wave-oriented description of state transitions: �I believe that the spectral lines do not
arise from jumps, but from the beating between two stationary solutions of the wave equation�.

Until recently, there was no experimental evidence to determine whether a quantum mechanical state
transition is a smooth process of a certain duration or a sudden jump process. In a recent seminal
experiment, the authors of [3] experimentally proved that quantum mechanical state transitions do have
a characteristic duration. The authors of [3] distinguish the trigger event of quantum mechanical state
transitions, which is stochastic, and the subsequent state transition process. They found that a triggered
light emission or absorption process is deterministic and has a well-de�ned duration. Furthermore, �gure
2.4.1 demonstrates a deterministic control over the completion or reversal of an already ongoing quantum
mechanical state transition process. An electromagnetic pulse is employed for gaining such deterministic
control over the outcome of an ongoing quantum mechanical state transition process. It is clear from
these results that understanding light-matter interactions requires �nding analytic solutions of Maxwell's
equation in the microscopic limit. Ad-hoc axioms, which bypass all equations of electromagnetism, can
only lead to misunderstandings.

Figure 2.4.1. External control over the outcome of a quantum mechanical transition,
which was applied at mid-point in the transition process. By de�nition, at this mid-
point half of the particles are still in the ground state while the other half are already in
the destination state. The applied external pulse angle determines whether the ongoing
quantum mechanical transition completes or reverses itself. PG denotes the probability
of �nding the particle in the ground state, while PD denotes the probability of �nding
the particle in the excited destination state. In the control experiment the same pulse is
applied at a random time, i.e. not at the mid-point of an ongoing quantum mechanical
transition process. Reproduced from [3].

Quantum mechanical measurements have been also axiomatized as discontinuous �jump� processes,
involving instantaneous wavefunction collapse. This leads to paradoxical assumptions of instantaneous
communications, supposedly achieved by measuring entangled photons. Regarding such assumptions,
which would violate causality, a refuting experiment is reported in reference [4]. Its author suggests that
the observed Bell inequality violation is related to standing electromagnetic waves that arise between
the source and detector already before the measurement. The random nature of quantum measurement
outcomes is caused by the electromagnetic vacuum noise, into which the electron is embedded. How to
understand measurement outcomes in a noisy environment? This simple sounding question does not have
a trivial answer, and leads to the long-standing challenge of interpreting quantum mechanics. Reference
[5] aims to clarify what quantum mechanical measurements really mean. In our work, we focus on
clarifying the fundamental nature of the electron wave, which is then subject to electromagnetic vacuum
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noise. Once the foundations are well-de�ned, the study of stochastic processes in noisy environments is
a follow-on step.

In summary, the above examples illustrate that by properly understanding the electron's electromag-
netic wave aspect we may clarify the foundations of quantum mechanics, which lays the foundation for
further progress.
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CHAPTER 3

The Zitterbewegung geometry of the electron wave, and electron

mass calculation from electromagnetic �eld energy

Andras Kovacs[1]
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Nomenclature

Symbol, name, SI units, natural units (NU).

A
□
: electromagnetic four-potential [V · s ·m−1], [eV];

A△: electromagnetic vector potential [V · s ·m−1], [eV];
G: electromagnetic �eld [V · s ·m−2], [eV2];
F : electromagnetic �eld bivector [V · s ·m−2], [eV2];
B: �ux density �eld [V · s ·m−2] = [T], [eV2];
E: electric �eld [V ·m−1], [eV2];
S: scalar �eld [V · s ·m−2], [eV2];
J

□e: four-current density �eld [A ·m−2], [eV3];
J△: current density �eld [A ·m−2], [eV3];
v

□
: four-velocity vector [m · s−1], [1];

v△: velocity vector [m · s−1], [1];
ρ: charge density [A · s ·m−3 = C ·m−3], [eV3];
x, y, z: space coordinates [m], [eV−1], [1.9732705 · 10−7 m ≈ 1 eV−1];
t: time variable [s], [eV−1], [6.5821220 · 10−16 s ≈ 1 eV−1];
c: light speed in vacuum [2.997 924 58 · 108 m · s−1], [1];
ℏ: reduced Planck constant (ℏ = h

2π ) [1.054 571 726 · 10
−34 J · s], [1];

µ0: permeability of vacuum [4π · 10−7 V · s ·A−1 ·m−1], [4π];
ϵ0: dielectric constant of vacuum [8.854 187 817 · 10−12 A · s ·V−1 ·m−1], [ 1

4π ];

e: electron charge [1.602 176 565 · 10−19 A · s], [0.085 424 546];
me: mass of the electron at rest [9.109384 · 10−31 kg], [0.510 998 946 · 106 eV];
λc: electron Compton wavelength [2.426 310 2389 · 10−12 m], [1.229 588 259 · 10−5 eV−1];
re: reduced Compton wavelength of electron (Compton radius) re =

λc

2π ;
ωe =

c
re
: Zitterbewegung angular frequency;

T : Zitterbewegung period T = 2π
ωe
;

P
□
: energy-momentum four-vector [kg ·m · s−1], [eV];

P△: momentum vector [kg ·m · s−1], [eV];
U, W : energy [J = kg ·m2 · s−2], [eV].

3.1. Introduction

This chapter is based on reference [1]: mostly the same methodology and calculations are followed,
and the main di�erence is the novel electron charge topology model introduced in this work. Building
onto the results of chapters 1 and 2, a new and particularly simple model of the electron is proposed in
this chapter.

One of the most detailed and interesting Zitterbewegung electron models to date has been proposed
by David Hestenes [2]. He rewrote the Dirac equation for the electron using the four dimensional real
Cli�ord algebra Cl1,3 (R) of space-time with Minkowski signature �+ − −−�, eliminating unnecessary
complexities and redundancies arising from the traditional use of matrices. The Dirac gamma matrices
γµ and the associated algebra can be seen as an isomorphism of the four-basis vector of space-time
geometric algebra. This simple isomorphism allows a full encoding of the geometric properties of the
Dirac algebra, and a rewriting of Dirac equation that does not require complex numbers or matrix
algebra. In this context, the wave function ψ is characterized by the eight real values of the even grade
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multivectors of space-time algebra Cl1,3 (R). Even grade multivectors can encode ordinary rotations as
well as Lorentz transformations in the six planes of the space-time. Hestenes associates the rotations
encoded by the wave function with an intrinsic very rapid rotation of the electron, the �Zitterbewegung�,
that is considered to generate the electron spin and magnetic moment. The word Zitterbewegung was
originally used by Schrödinger to indicate a fast movement attributed to an hypothetical interference
between �positive� and �negative� energy states. Kerson Huang later, more realistically, interpreted the
Zitterbewegung as a circular motion [3].

In particular, B. Sidharth states that �The well-known Zitterbewegung may be looked upon as a circular
motion about the direction of the electron spin with radius equal to the Compton wavelength (divided by
2π) of the electron. The intrinsic spin of the electron may be looked upon as the orbital angular momentum
of this motion. The current produced by the Zitterbewegung is seen to give rise to the intrinsic magnetic
moment of the electron.� [4].

Hestenes considers the complex phase of the wave function solution of the traditional Dirac equa-
tion as the phase of the Zitterbewegung rotation, showing �the inseparable connection between quantum
mechanical phase and spin� consequently rejecting the �conventional wisdom that phase is an essential
feature of quantum mechanics, while spin is a mere detail that can often be ignored� [5]. Using the
space-time algebra in reference [6], Hestenes de�nes the �canonical form� of the real wave function ψ:

ψ (x) =
(
ϱeiβ

) 1
2 R.

In the above equation, x is a generic space-time point, ϱ = ϱ (x) is a scalar function interpreted as a
probability density proportional to charge density, i is the spatial bivector i = γyγz, β = β (x) is a
function representing the value of a rotation phase in the plane γyγz and R is a rotor valued function
that encodes a Lorentz transformation. The imaginary unit i is replaced by a bivector that generates
rotation in a well-de�ned space-like plane, and not in a generic unde�ned �complex plane�. Essentially,
this work shows how the electron wavefunction is generated from its Zitterbewegung wave.

Based on the results of chapters 1 and 2, the electron characteristics may be explained by an electro-
magnetic wave that rotates at the speed of light along a circumference with a radius equal to the reduced
electron Compton wavelength (≈ 0.386159 pm). This radius corresponds to speed of light rotation at the

ω = mc2

ℏ De Broglie frequency. The electron mass-energy, expressed in natural units, is then equal to
the angular speed of the Zitterbewegung rotation and to the inverse of the orbit radius (i.e. ≈ 511 keV ),
whereas the angular momentum is equal to the reduced Planck constant ℏ. Consequently, unlike the
Hestenes prediction, our model proposes a relativistic contraction of the Zitterbewegung radius and a
corresponding instantaneous Zitterbewegung angular speed that increases as the electron speed increases.

By using the electromagnetic four-potential as a �Materia Prima� a natural connection between
electromagnetic concepts and Newtonian and relativistic mechanics seems to be possible. The vector
potential should not be viewed only as a pure mathematical tool to evaluate spatial electromagnetic
�eld distributions but as a real physical entity, as suggested by the Aharonov-Bohm e�ect, a quantum
mechanical phenomenon in which a charged particle is a�ected by the vector potential in regions in which
the electromagnetic �elds are null [7].

The present chapter is structured in the following manner: Section 3.2 deals with a brief presentation
of Maxwell's equations that does not use Lorenz gauge; Section 3.3 presents a new simple Zitterbewegung
model of the electron with a list of the main parameters that can be deduced by applying this model;
Section 3.5 describes an original method to easily derive the Lorentz force law from the electromagnetic
�eld.

In this chapter all equations enclosed in square brackets with subscript �NU� have dimensions ex-
pressed in natural units.

3.2. Maxwell's Equations in Cl3,1

The Space-time algebra is a four dimensions Cli�ord algebra with Minkowski signature Cl1,3 (�west
coast metric�) or Cl3,1 (�east coast metric�) [8, 9].

In Cl3,1 algebra, used in this work, calling {γx, γy, γz, γt} the four unitary vectors of an orthonormal
base the following rules apply:

(3.2.1) γiγj = −γjγi with i ̸= j and i, j ∈ {x, y, z, t},

(3.2.2) γ2x = γ2y = γ2z = −γ2t = 1.
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Maxwell's equations can be rewritten considering all the derivatives of the electromagnetic four-potential
A

□
:

(3.2.3) A
□
(x, y, z, t) = γxAx + γyAy + γzAz + γtAt.

Each of the vector potential components Ax, Ay, Az and At is a function of space and time coordinates
and has dimension in SI units equal to [V · s ·m−1]. A

□
is a harmonic function that can be seen as

the unique source of all concepts-entities in Maxwell's equations. We recall from chapter 1 that using
the following de�nition of the operator ∂ in space-time algebra (where ∇ = γx

∂
∂x + γy

∂
∂y + γz

∂
∂z and

c = 1/
√
ϵ0µ0)

(3.2.4) ∂ = γx
∂

∂x
+ γy

∂

∂y
+ γz

∂

∂z
+ γt

1

c

∂

∂t
= ∇+ γt

1

c

∂

∂t
,

the following expression can be written (see Table 1):

(3.2.5) ∂A
□
= ∂ ·A

□
+ ∂ ∧A

□
= S + F = G,

where

(3.2.6) S = ∇ ·A△ − 1

c

∂At
∂t

is the scalar �eld,

(3.2.7) F =
1

c
Eγt + IBγt =

1

c
(E + IcB) γt

the electromagnetic �eld and

(3.2.8) I = γxγyγzγt

is the pseudoscalar unit.

Table 1. Relation between electromagnetic entities and the vector potential.

∂A
□

γxAx γyAy γzAz γtAt

γx
∂
∂x S1 Bz1 −By1 1

cEx1
γy

∂
∂y Bz2 S2 Bx1

1
cEy1

γz
∂
∂z −By2 Bx2 S3

1
cEz1

γt
1
c
∂
∂t

1
cEx2

1
cEy2

1
cEz2 S4

The electromagnetic �eld G can be expressed in the following compact form

(3.2.9) G (x, y, z, t) = ∇ ·A△ − 1

c

∂At
∂t

+∇Atγt −
1

c

∂A△

∂t
γt + I∇×A△γt,

and the expression

(3.2.10) ∂G = ∂2A
□
= 0,

represents the four Maxwell's equations. This is the mathematically simplest formulation of Maxwell's
equation, and it is a proper �eld equation.

By applying, now, the ∂ operator to the scalar �eld S, we obtain the expression of the four-current
as

(3.2.11)
1

µ0
∂S =

1

µ0

(
γx
∂S

∂x
+ γy

∂S

∂y
+ γz

∂S

∂z
+ γt

1

c

∂S

∂t

)
= J

□e,

where J
□e = γxJex + γyJey + γzJez − γtcρ = J△ − γtcρ = ρ (v − γtc) is the four-current vector and

v
□

= γxvx + γyvy + γzvz − γtc = v − γtc is a four-velocity vector. The ∂ operator applied to the
four-current gives the charge-current conservation law

(3.2.12)
1

µ0
∂ · (∂S) = ∂ · J

□e =
∂Jex
∂x

+
∂Jey
∂y

+
∂Jez
∂z

+
∂ρ

∂t
= 0,

which can be written alternatively as
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(3.2.13) ∂ · (∂S) = ∂2S =
∂2S

∂x2
+
∂2S

∂y2
+
∂2S

∂z2
− 1

c2
∂2S

∂t2
= ∇2S − 1

c2
∂2S

∂t2
= 0.

The charge is related to the scalar �eld according to

(3.2.14)
1

c

∂S

∂t
= µ0Jet = −µ0c

∂q

∂x∂y∂z
= −µ0cρ,

so that, by applying the time derivative to (3.2.13) and remembering (3.2.14), the wave equation of the
charge density �eld ρ (x, y, z, t) can be deduced:

(3.2.15)
∂

∂t

(
∂2S

)
= ∂2

(
∂S

∂t

)
= ∂2

(
−µ0c

2ρ
)
= −µ0c

2∂2ρ = 0,

whose last equality gives

(3.2.16) ∂2ρ = ∇2ρ− 1

c2
∂2

∂t2
ρ = 0.

A more detailed development of the above equations was discussed in chapter 1.

3.3. Electron Zitterbewegung Model

The concept of charge that emerges from this rewriting of Maxwell's equations, has a non trivial
implication: the analysis of (3.2.13) and (3.2.16) shows that the time derivative of a �eld S which
propagates at the speed of light, must necessarily represent charges that are also moving at the speed of
light.

This observation advises a pure electromagnetic model of elementary particles based on the Zitter-
bewegung interpretation of quantum mechanics [2, 10]. According to this interpretation, the electron
structure consists of a massless charge that rotates at the speed of light along a circumference equal to
electron Compton wavelength λc [11, 12]. Calling re the Zitterbewegung radius, ωe the angular speed
and T its period we have:

(3.3.1) re =
λc
2π

≈ 3.861 593 · 10−13 m,

(3.3.2) ωe =
c

re
= 2π · c

λc
≈ 7.763 440 · 1020 rad · s−1,

(3.3.3) T =
2π

ωe
=

2πre
c

≈ 8.093 300 · 10−21 s.

The value of the electron mass, expressed in SI units, can be derived from the following energy
equations [2]

(3.3.4) Wtot = mec
2 = ℏωe =

ℏc
re
,

from which

(3.3.5) me =
ℏωe
c2

=
ℏ
cre

=
h

cλc
≈ 9.109 383 · 10−31 kg

is obtained. Using natural units with ℏ = c = 1 the electron mass (in eV ) is equal to the angular speed
ωe and to the inverse of re: [

me = ωe =
1

re
≈ 0.511 · 106 eV

]
NU

.
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3.3.1. Simple Electron Model. A charge rotating at the speed of light generates a current Ie that
is equal to the ratio of the elementary charge e and its rotation period T [13]:

(3.3.6) Ie =
e

T
=

ec

2πre
=
eωe
2π

≈ 19.796 331 A.

Neglecting the electron's charge radius, the electron magnetic moment µB (Bohr magneton) is equal
to the product between the current Ie and the enclosed area Ae

(3.3.7) µB = IeAe =
eωe
2π

πr2e =
ec

2
re =

ec2

2ωe
=

eℏ
2me

≈ 9.274 010 · 10−24 A ·m2.

Occam's razor is an e�ective epistemological instrument that imposes to avoid as much as possible the
introduction of exceptions. Following this rule, a pure electromagnetic origin of the electron's �intrinsic�
angular momentum should be found. Consequently, the canonical momentum Pt of the rotating massless
charge may be seen as the cause of the intrinsic angular momentum:

Ω = Ptre,

where the canonical momentum Pt of e, in presence of a vector potential A, generated by the current Ie,
is

Pt = eA.

Imposing the constraint that Ω = ℏ we can compute A as function of Ie

(3.3.8) Ω = eAre =
eAc

ωe
=
e2cA

2πIe
= ℏ,

from which it is possible to calculate the vector potential A seen by the spinning charge

(3.3.9) A =∥ A
□
∥= 2πℏ

e2c
Ie =

ℏ
ere

=
ℏωe
ec

=
mec

e
≈ 1.704 509 · 10−3 V · s ·m−1.

From (3.3.9) it is possible to derive the Fine Structure Constant (FSC)

(3.3.10) α =
µ0

4π
· ce

2

ℏ
=
µ0

4π
· eωe
A

≈ 7.297 352 · 10−3

Using natural units we get these simple relations:[
A = 2πα−1Ie

]
NU[

eA = ωe = r−1
e = me = Pt

]
NU

where α−1, the inverse of the FSC, is a pure number and e is the elementary charge expressed in natural
units [

α−1 = e−2 ≈ 137.035989
]
NU

.

3.3.2. Spin and Intrinsic Angular Momentum. The intrinsic angular momentum ℏ of the elec-
tron model (see (3.3.8)) is compatible with the spin value ℏ

2 if we consider the electron interaction with

the external magnetic �eld BE , as in the Stern-Gerlach experiment. We can interpret the spin value ±ℏ
2

as the component of the intrinsic angular momentum Ω = ℏ aligned with the external magnetic �eld
BE . In this case the angle between the BE vector and the angular momentum has only two possible
values, namely π

3 and 2π
3 while the electron is subjected to a Larmor precession with angular frequency

ωp =
dϑp

dt . The Larmor precession is generated by the mechanical momentum

(3.3.11) τ = |µB ×BE | = BEµB sin
(π
3

)
.

But

dΩ = Ω⊥dϑp = Ωsin
(π
3

)
dϑp,
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where Ω⊥ is the component of the intrinsic angular momentum orthogonal to BE and, therefore, it is
possible to write

(3.3.12) τ =
dΩ

dt
= Ωsin

(π
3

) dϑp
dt

.

By equating (3.3.11) and (3.3.12) we get

BEµB = Ωωp,

from which it is possible to determine the precession angular frequency

(3.3.13) ωp =
BEµB

Ω
=
BEµB

ℏ
.

We note that the Larmor spin-precession's frequency is half of the �electron spin resonance� frequency
[14]: ωesr = 2ωp. The ωesr value is the experimentally measurable angular frequency of resonant �ipping
between the parallel and anti-parallel spin precession orientations with respect to a sinusoidally varying
applied magnetic �eld. A consequence of Larmor spin-precession phenomenon: the measured ℏ

2 spin
angular moment, measured via an applied B �eld, is only that component of the total angular momentum
vector which is pointing along the applied B �eld.

3.3.3. Larmor spin-precession angle. In the preceding section we discussed the Larmor spin-
precession phenomenon. Without noise interference, we get the classical mechanics analogue of Larmor
precession. In the absence of vacuum noise, the angle between BE and µB may be arbitrarily close to
π, and the measured spin angular momentum could be arbitrarily close to zero in that hypothetical case.
However, the presence of vacuum noise establishes an energy noise �oor. Let us check how this measured
spin angular momentum relates to the magnetic �eld energy noise �oor. We equate the measured angular
momentum with the circulation of an electromagnetic wave:

(3.3.14) Ω⊥ = P · r = P
c

ω

where P is the electromagnetic momentum, and r is the circulation radius.
With the angle between BE and µB being π

3 and 2π
3 , we obtained Ω⊥ = ℏ

2 in the preceding section.
The above equation therefore becomes:

(3.3.15) Pc =
ℏω
2

On the other hand, the mean magnetic energy density of vacuum noise is B̄
2

µ0
= 1

V
ℏω
2 at each frequency.

A detailed study of the electromagnetic vacuum noise is found in chapter 6. This correspondence between

Pc and B̄2

µ0
suggests that the Larmor precession angle is de�ned by the magnetic noise �oor, so that we

cannot measure a smaller magnetic energy density than the noise �oor limit.

3.3.4. Value of the Vector Potential, Cyclotron Resonance and Flux Density Field. The
pure electromagnetic momentum eA of the spinning charge of an electron at rest can be seen as if it were
the momentum of a particle of mass me and speed c in classical Newtonian mechanics. Considering ωe
as the cyclotron angular frequency (which is coincident with the Zitterbewegung angular speed) given by
the �ux density �eld B generated by the current Ie

ωe =
eB

me
=
eBc2

ℏωe
it is possible to deduce the magnetic �ux density produced by the electron

(3.3.16) Be =
ℏω2

e

ec2
=
m2
e

e
≈ 4.414 004 · 109 V · s ·m−2.

This very high �ux density value is also known as the Schwinger limit value. In traditional quantum
�eld theory, the Schwinger limit is interpreted as the boundary above which the electromagnetic �eld
is expected to become nonlinear, i.e. no longer conforming to the linear Maxwell equation. Our work
presents a completely di�erent interpretation of the Schwinger limit value: it is de�ned by the electron
structure. The linear versus nonlinear limit of Maxwell's equation is discussed in chapter 7.
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It is also possible to calculate the �ux density at the center of the electron orbit by the following
expression derived from the Biot-Savart law

(3.3.17) Bo =
µ0

2
· Ie
re

≈ 32.210 548 · 106 V · s ·m−2.

Considering that

(3.3.18) dA = Adϑ⇒ dA

dt
= Aωe,

where dϑ = ωedt is the di�erential of the Zitterbewegung phase, and considering that the magnetic force
FB must be equal to the time derivative of the canonical momentum, it is possible to write

(3.3.19) FB = Beec = e
dA

dt
= eA

dϑ

dt
= eAωe ≈ 0.212 014 N.

Finally, by manipulating the previous equation, it is possible to recompute by another method the norm
of the vector potential

A =
Bec

ωe
=

ℏωe
ec

=
ℏ
ere

.

3.3.5. Electron structure, and the electromagnetic �eld energy that comprises the elec-

tron mass. Once we obtain the expression for the vector potential it is possible to determine the magnetic
�ux produced by the rotating elementary charge by applying the circulation of the vector potential A:

(3.3.20) ϕe =

˛
λc

Adλ =

ˆ 2π

0

ℏ
ere

redϑ = 2π
ℏ
e
=
h

e
≈ 4.135 667 · 10−15 V · s,

i.e. the magnetic �ux crossing the surface described by the charge trajectory is quantized (�ux quantum).
Now it is possible to estoimate the magnetic energy stored in the �eld produced by the spinning charge

(3.3.21) Wm =
1

2
ϕeIe =

1

2
· 2πℏ

e
· ec

2πre
=

ℏc
2re

≈ 4.093 553 · 10−14 J

which is equal to half the electron rest energy Wtot as can be seen from (3.3.4). Since electromagnetic
induction requires equal amount of electric and magnetic �eld energies, the other half of the electron
energy can be attributed to electric �eld energy, i.e.

(3.3.22) Wtot −Wm =We =

˚
V

we dV,

where we is the electrostatic energy per unit of volume and V is the volume in which the whole energy
We is stored. In essence, we our simple

[
eA = ωe = r−1

e = me = Pt
]
NU

electron model choice implies
that the electron mass comprises electric and magnetic �eld energy, which form the electron wave. In the
following, we further re�ne this simple electron model.

The ϕe

T ratio has the dimension of a voltage:

(3.3.23) Ve =
ϕe
T

=
h

e
· c

2πre
=

ℏc
ere

≈ 5.109 989 · 105 V,

where T is de�ned by (3.3.3). Now, dividing the above voltage by the current generated by the rotating
charge expressed by means of (3.3.6), we �nd the von Klitzing constant or quantum of resistivity, related
to the quantum Hall e�ect

(3.3.24) RK =
Ve
Ie

=
h

e
· c

2πre
· 2πre
ec

=
h

e2
=

2πℏ
e2

≈ 25812.807 Ω.

Finally, it is possible to deduce the values of two interesting electrical parameters, namely the induc-
tance Le, the capacitance Ce of the electron and the frequency fe. In fact

(3.3.25) Le =
ϕe
Ie

= 4π2 ℏre
e2c

≈ 2.089 108 · 10−16 Ω · s,
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(3.3.26) Ce =
e

φe
= 4πϵ0rcl ≈ 3.135 381 · 10−25 F

and

(3.3.27) fe =
1√
LeCe

≈ 1.235 590 · 1020 Hz

which is indeed the electron's Zitterbewegung frequency. This relationship demonstrates the electromag-
netic induction that generates the electron wave.

The remaining question is to understand what that volume is, within which the electron charge is
located. Equation 3.3.9 informs that the electric charge density is distributed in such a way that the
electron charge experiences a constant vector potential value. Such a constant vector potential value
is a pre-condition to a well-de�ned Zitterbewegung frequency value. Suppose that the Zitterbewegung
current is circulating within a toroidal volume, whose major radius is re. From (3.3.9) and (3.3.6), with
the hypothesis that the electron is characterized by a uniform current density, we get the �rst term of
the interaction part of the Lagrangian density

(3.3.28) Lint1 = J△ ·A△ = JA =
Ie
πr2cl

· mec

e
≈ 1.352 604 · 1027 J ·m−3

where rcl is the minor toroidal radius.
By integration over the volume described by the electron toroidal trajectory it is possible to validate

our electron mass calculation:

(3.3.29) Wtot = mec
2 =

˚
V

JAdV =
Ie
πr2cl

· mec

e
· 2π2rer

2
cl ≈ 8.187 106 · 10−14 J = 510.998 946 keV

The match with the correct electron mass validates the chosen geometry: the Zitterbewegung current
is circulating within a toroidal volume, whose major radius is re. We note that the rcl minor toroidal
radius remains yet undetermined. The above integral corresponds to a longitudinal electromagnetic wave,
whose formulation is given by equation 2.2.1: half of such a longitudinal wave energy comprises scalar �eld
energy. Therefore, the electron's energy comprises electric, magnetic, and scalar �eld energy components.

3.3.6. Electron charge topology. In this section, we aim to determine the electron's charge and
current distribution topology in more details. We estimate rcl from electron-light interaction experiments.
At fm-scale photon wavelength, which allows fm-scale spatial resolution of the electron structure, electrons
scatter light via the Compton scattering process. In Compton scattering, the scattering cross section is
set by the 2.82 fm classical electron radius of the Klein-Nishina formula. Therefore, rcl is approximately
given by the classical electron radius formula [15]:

(3.3.30) rcl =
e2re

4πϵ0ℏc
≈ 2.817 940 · 10−15 m

The obtained electron geometry is illustrated in �gure 3.3.1. The circulating current distribution has
a �nite dimension, i.e. the electron is not point-like. The condition of light-speed current circulation
implies that, everywhere within the torus, electric currents move along EXACTLY the same re radius.
This leads to a Hopf-�bration type current topology, where each point moves around a slightly di�erent
circulation center. This Zitterbewegung current topology is illustrated in �gure 3.3.2. The inherent
symmetry of each current loop ensures that they experience the same electric potential, as required for
obtaining a single Zitterbewegung frequency.

It is interesting to note that the ratio re
rcl

is equal to the inverse of the �ne structure constant, i.e.

(3.3.31)
re
rcl

=
4πϵ0ℏc
e2re

re =
4πϵ0ℏc
e2

= α−1 ≈ 137.035 999.

3.3.7. Summary of electron parameters. We identi�ed the electron's toroidal structure. Its
toroidal volume is �lled by a longitudinal electromagnetic wave, whose circulation pattern is illustrated in
�gure 3.3.2. The quantum mechanical wavefunction is the spatial component of the Lorentz-transformed
longitudinal electromagnetic wave, hence the Zitterbewegung phase and quantum mechanical phase are
everywhere identical. This longitudinal wave induces electric and magnetic �elds, which extend outside
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Figure 3.3.1. An illustration of the electron's particle aspect. The electric current
circulates at the speed of light within a torus whose major radius is the reduced Compton
radius, and whose minor radius is classical electron radius. This circular Zitterbewegung
motion generates the electron's spin.

Figure 3.3.2. A more detailed illustration of the Zitterbewegung current trajectories
within the electron torus.

of its toroidal volume. The electron mass is identi�ed with the integrated energy density of these induced
electric and magnetic �elds.

Numerous quantitative parameters that can be deduced from our electron Zitterbewegung model;
these are summarized in Table 2, where the �rst three rows are the model's input parameters.

3.3.8. Zitterbewegung and a Simple Derivation of the Relativistic Mass. With the Zitter-
bewegung model it is possible to show a simple, original and intuitive explanation of the relativistic mass
concept. Let us consider the above calculated r−1

e = me relation from a boosted reference frame per-
spective. When a particle having rest mass m0 is observed from a reference frame boosted by a Lorentz
boost factor γL, its mass becomes γLm0 from the perspective of the boosted reference frame. Keeping
in mind that circular Zittebewegung comprises electromagnetic waves that are perpendicular to the axial
direction of particle motion, the transversal relativistic Doppler shift will change these electromagnetic
wavelengths by γ−1

L factor. In the axial direction, the particle size changes also by γ−1
L factor because

of Lorentz contraction. Therefore, from the perspective of the boosted reference frame, the particle size
changes by γ−1

L factor, leading to the r−1 = m relation remaining valid in the boosted reference frame:

(3.3.32) r = re

√
1− v2z

c2
,

(3.3.33) m =
me√
1− v2z

c2

.

where me is the electron mass at rest. With reference to equation 3.3.21, the relativistic mass increase
is a direct consequence of the shrinking Zitterbewegung radius in a boosted reference frame. Fig. 3.3.3
represents the Zitterbewegung trajectory of the circulating charge of an electron subjected to an acceler-
ation directed along the positive z axis. Due to its acceleration, the Zitterbewegung radius reduces itself
according to (3.3.32). In particle accelerator experiments, where electrons gain GeV-range kinetic energy,
the energetic electron charge is indeed concentrated into a very tiny region of space.
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Table 2. Parameters of the Zitterbewegung electron model. The spin is the component
of the angular momentum that points along the external magnetic �eld BE (see (3.3.11))

Item Symbol Value Unit

charge e 1.602 176 565 · 10−19 C = A · s
Zitterbewegung orbit radius re =

λc

2π 3.861 593 · 10−13 m

intrinsic angular momentum Ω = ℏ = h
2π 1.054 571 726 · 10−34 J · s

spin* ℏ
2 0.527 285 863 · 10−34 J · s

angular speed ωe 7.763 440 · 1020 rad · s−1

mass me 9.109 384 · 10−31 kg
current Ie 19.796 331 A

magn. moment (Bohr magn.) µB 9.274 010 · 10−24 A ·m2

vector potential A 1.704 509 · 10−3 V · s ·m−1

magnetic �ux density Be 4.414 004 · 109 V · s ·m−2

magnetic �ux ϕe =
h
e 4.135 667 · 10−15 V · s

magnetic energy Wm 4.093 553 · 10−14 J
electric energy We 4.093 553 · 10−14 J

electron energy at rest Wtot = mec
2 8.187 106 · 10−14 J

classic electron radius rcl 2.817 940 · 10−15 m
inverse of the FSC α−1 = re

r0
137.035 999 1

Von Klitzing constant RK = h
e2 = µ0c

2α 25812.807 Ω

inductance Le =
4π2ℏre
e2c 2.089 108 · 10−16 Ω · s

capacitance Ce = 4πϵ0r0 3.135 381 · 10−25 F
1-st part of Lint JA 1.352 604 · 1027 J ·m−3

electron energy at rest
˝

V
JAdV 510.998 946 keV

electron energy at rest
˝

V
ρφe dV 510.998 946 keV

memristance ϕe

e = h
e2 25812.807 Ω
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Figure 3.3.3. Zitterbewegung trajectory during an acceleration of the electron in the z direction.

3.4. A precise magnetic moment calculation

The magnetic moment is traditionally given by the µB = eℏ
2me

formula, where the only non-constant
parameter is the electron mass. This magnetic moment formula was calculated via equation 3.3.7.

Measurements indicate that there is a small deviation between the experimental magnetic moment
and the above formula. According to equation 3.3.7, the measurement of the electron's magnetic moment
can be interpreted as a measurement of its mass. The presence of the small anomalous part means that
the formula is not exactly correct, and the implicit assumptions going into this formula must be checked.
It has the implicit assumption that the dipole magnetic �eld is created by the electric charge, upon
exactly one full rotation. Let us check whether this assumption is valid.

Starting from the fundamentals, the ∂2A
□
= 0Maxwell equation describes how electric and magnetic

�elds induce each other. In this chapter, we showed that the electron mass comprises electric and magnetic
�eld energies, that induce each other.

But let us consider the circular Zitterbewegung of an electron, as illustrated in �gure 3.4.1. During
one Zitterbewegung cycle at circulation radius Re, the induction is in�uenced by electromagnetic signals
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Re 2!Re

Figure 3.4.1. The spherical volume element within the reach of electromagnetic signals
during one full Zitterbewegung circulation

propagating at the speed of light from within a sphere of 2πRe radius. The total electric �eld energy of
the electron is:

(3.4.1) We =
1

2
mec

2

However, the electric �eld energy outside of a sphere of 2πRe radius is:

(3.4.2) W2πR =
e2

32π2ϵ0

ˆ ∞

2πRe

1

r4
· 4πr2dr = e2

8πϵ0

ˆ ∞

2πRe

1

r2
dr = − e2

8πϵ0

1

r

∣∣∣∣∞
2πRe

=
e2

8πϵ02πRe

The above equation means that only a part of the total electric �eld could exert its magnetic-�eld-
inducing e�ect during a Zitterbewegung rotation by 2π phase. The unaccounted ratio of electric �eld
energy is:

(3.4.3)
W2πR

We
=

e2

4πϵ02πRemec2
=

rcl
2πRe

where we used the rcl =
1

4πε0
e2

mec2
de�nition of the classical electron radius.

It follows from the above result that the ratio of single loop account electric �eld energy is 1−W2πR

We
=

1− rcl
2πRe

.
In order to calculate the correct magnetic dipole �eld strength, we must account the induction of the

total electric �eld energy. Therefore, the anomalous magnetic moment is just the inverse of the single
loop accounted electric �eld energy ratio:

(3.4.4) g =

(
1− rcl

2πRe

)−1

≈ 1 +
α

2π

The approximation part in the above formula corresponds to the Schwinger factor. It can be observed

from the above result that the correct g =
(
1− rcl

2πRe

)−1

formula is just slightly di�erent from the

Schwinger factor when rcl
Re

is small, but becomes signi�cantly di�erent when rcl and Re are similar in
size.
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3.5. Electron kinematics from electromagnetic momentum

Our preceding results mapped out the electromagnetic �eld structure of an electron particle. The
electron mass and energy have purely electromagnetic �eld origin. The �pure electromagnetic� vector
eA

□
may be interpreted as the momentum-energy P

□
of a particle with electric charge e, momentum

P△ and energy U = Ptc:

(3.5.1) P
□
= eA

□
,

(3.5.2) P
□
= γxPx + γyPy + γzPz + γt

U

c
= P△ + γt

U

c
.

For a particle that moves with speed v along a direction z orthogonal to the Zitterbewegung rotation
plane, the momentum P△ can be decomposed in two vectors: parallel component to the Zitterbewegung
plane and an orthogonal component to it. The parallel component is a rotating vector, that indicates the
component of the momentum due to the angular frequency ωe:

(3.5.3) P△ = P ∥ + P⊥,

where

|P ∥| =
ℏωe
c

= meωere = mec[
|P ∥| =

1

re
= ωe = me

]
NU

.

The P⊥ component can bee seen as the usual kinetic momentum of a particle with rest mass me. For
simplicity of notation, from now, we shall refer to this component as P , so that

P 2
□
= e2A2

□
= P 2

△ − U

c2

2

= P 2 +m2
ec

2 − U

c2

2

.

The relativistic mass m can be expressed as:

m2c2 = m2
ec

2 + P 2 = m2
ec

2 +m2v2.

Consequently this electromagnetic four-momentum P
□
, for electrons moving with uniform velocity,

is a light-like vector:

P 2
□
= m2c2 − U

c2

2

= 0

An electron that moves with velocity v ≪ c has an approximate momentum P given by

P = eA⊥ ≃ P∥
v

c
= mev,

and an acceleration a = dv
dt implies a force f = dP

dt = e · dA⊥
dt = m · dvdt .

Now recalling that the bivector part of (3.2.5) is

∂ ∧A
□
= F

after multiplying both sides by the charge e, it becomes

(3.5.4) e∂ ∧A
□
= ∂ ∧ eA

□
= eF .

By considering (3.5.1) and (3.5.2) this equation can be rewritten as

(3.5.5) ∂ ∧
(
P△ + γt

U

c

)
= eF ,

or, by means of (3.5.3), as

(3.5.6) ∂ ∧
[(
P ∥ + P

)
+ γt

U

c

]
= eF .
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The term ∂ ∧ P ∥ can be carried out because the average value of P ∥, in a scale time much larger
than the Zitterbewegung period, is zero:

(3.5.7) ∂ ∧
(
P + γt

U

c

)
= eF ,

∂ ∧
(
P + γt

U

c

)
=
e

c
Eγt + eIBγt.

Equating only the components that contain bivectors with γt terms we obtain(
∂P

∂t

)
EU

γt +∇Uγt = eEγt

or

(3.5.8)

(
∂P

∂t

)
EU

= eE −∇U.

In (3.5.8)
(
∂P
∂t

)
EU

is the force acting on the charge e due both to the electric �eld E (Coulomb force)
and to the gradient of the �potential energy� U . Instead, by equating only the components that contain
pure spatial bivectors we get

(3.5.9) ∇∧ P = eIBγt = −eIγtB = eI△B,

where the term −Iγt = γxγyγz = I△ is the unitary volume of the three dimensional space. Left-
multiplying both sides of (3.5.9) by I△ gives

(3.5.10) I△∇∧ P = −eB,

which is equivalent to the following equation in the ordinary algebra:

(3.5.11) ∇× P = eB.

As an example, the component of the above equation along the x axis is

γx

(
∂Pz
∂y

− ∂Py
∂z

)
= γxeBx.

Now, by applying the cross product of the velocity v of charge e to both terms in (3.5.11) we obtain

(3.5.12) v × (∇× P − eB) = 0.

The components of (3.5.12) are represented in Table 3 considering that

vi
∂Pj
∂i

=
∂i

∂t

∂Pj
∂i

=
∂Pj
∂t

vj
∂Pj
∂i

=
∂j

∂t

∂Pj
∂i

=
∂j

∂i

∂Pj
∂t

= 0 for i ̸= j,

where i, j ∈ {x, y, z}.
For these reasons (3.5.12) leads to the usual form of the force contribution due to the magnetic �ux

density �eld B

(3.5.13)

(
∂P

∂t

)
B

= ev ×B.

Finally, we get the whole force contribution by summing up the forces dP
dt =

(
∂P
∂t

)
EU

+
(
∂P
∂t

)
B
given

respectively by (3.5.8) and (3.5.13)

(3.5.14)
dP

dt
= e (E + v ×B)−∇U.
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Table 3. Products v × (∇× P − eB).

v × (∇× P − eB) γx

(
∂Pz

∂y − ∂Py

∂z − eBx

)
γy
(
∂Px

∂z − ∂Pz

∂x − eBy
)

γxvx 0 γz

(
− ∂Pz

∂t

∣∣
xy

− evxBy

)
γyvy −γz

(
∂Pz

∂t

∣∣
yx

− evyBx

)
0

γzvz −γy
(
− ∂Py

∂t

∣∣∣
zx

− evzBx

)
−γx

(
∂Px

∂t

∣∣
zy

− evzBy

)
v × (∇× P − eB) γz

(
∂Py

∂x − ∂Px

∂y − eBz

)
γxvx γy

(
∂Py

∂t

∣∣∣
xz

− evxBz

)
γyvy γx

(
− ∂Px

∂t

∣∣
yz

− evyBz

)
γzvz 0

3.6. Wave-particle duality and the electron mass concept

Treating the electron as a particle, various interpretations of the electron mass are based on Einstein's
mc2 = ϵ, De Broglie's mc2 = ℏω, and Newton's ma = F formulas. Taking the electron wave perspective,
a realistic electron wave model must precisely de�ne the electron mass from its electromagnetic wave
parameters. Applying the results established so far, the following list summarizes the electron wave
perspective based interpretations of the electron mass:

(1) Einstein's mc2 = ϵ de�nition, which equates mass with energy. According to this de�nition, the
electron mass is the total energy of the electromagnetic �eld constituting it. The energy density
of the electromagnetic �eld is given by equation 1.3.26, which follows directly from Maxwell's
equation. Electron wave models that leave any electromagnetic �eld energy uncounted are
violating Maxwell's equation. As a �rst estimation, the magnetic �eld energy of the electron
wave is given by equation 3.3.21, which yields half the electron mass. Maxwell's equation
ensures that any electromagnetic wave comprises equal amounts of electric and magnetic �eld
energy. This simplest model equates the electron mass with electric and magnetic �eld energy.
Regarding a more precise energy accounting, we showed at the end of section 3.3.5 that the
electron's mass comprises electric, magnetic, and scalar �eld energy components. The ratio of
scalar �eld energy is left undetermined in our work.

(2) De Broglie'smc2 = ℏω de�nition, which equates mass with a wave frequency. We have identi�ed
ω with the angular frequency of the electromagnetic wave, which comprises the electron. We
demonstrated in chapter 2 that the quantum mechanical wavenumber is just the Lorentz trans-
formed component of this electromagnetic angular frequency. In this chapter, we identi�ed ω
with the angular frequency of the electron wave's circular Zitterbewegung. The proportionality
between m and ω follows from r−1 = m relation between mass and Zitterbewegung radius, and
we showed that this relation originates from a relativistic Doppler e�ect on the electron wave.

(3) The Schrödinger equation based mass de�nition, where mass is a Hamilton�Jacobi equation's
single free parameter. We showed in chapter 2 that the Schrödinger equation converges to the
classical Hamilton�Jacobi equation in the ℏ → 0 limit. The Lagrangian of this Hamilton�Jacobi
equation is de�ned by J

□
·A

□
; the corresponding electromagnetic wave solution was also shown

in chapter 2. Equation 3.3.29 integrates the amplitude of J ·A over the toroidal Zitterbewegung
region where it is non-zero; this integral indeed evaluates to mc2. For a stationary electron,
the Hamilton�Jacobi action is obtained by this Lagrangian over time. This means that the
electron mass evolves with time, and in this case the electron mass can be interpreted as a
vector pointing along the time axis. For a moving electron, its mass vector is pointing along its
spacetime trajectory. This concept of vectorial mass dimensionality shows up also in the Dirac
equation context, and shall be further discussed in chapter 5.

(4) Newton's ma = F de�nition, which equates mass with resistance to acceleration. Equation
3.5.14 shows that the electron-comprising electromagnetic wave momentum evolves according
to the usual Lorentz force. Since the Schrödinger equation converges to the classical Hamilton�
Jacobi equation, Newton's ma = F relation is ful�lled.

These four complementing electron mass interpretations nicely illustrate how the electron mass arises from
its microscopic wave structure. A successful electron model explains why the same mass term appears in
the the above-listed four formulas. In contrast to particle-oriented perspectives, where the electron mass
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remains a black-box parameter, our wave-oriented electron model reveals the tangible origin of electron
mass.

3.7. Preceding Spinning Charge Models

In 1915 Alfred Lauck Parson published �A Magneton Theory of the Structure of the Atom�[19] where
he proposed a spinning ring model of the electron. Various forms of the spinning charge model of electrons
have been rediscovered by many authors. However, the incompatibility with the most widely accepted
interpretations of quantum mechanics prevented them from receiving proper attention.

Using geometric algebra and starting from Dirac theory, David Hestenes has proposed a Zitterbe-
wegung model according to which �the electron is a massless point particle executing circular motion in
the rest system� and �with an intrinsic orbital angular momentum or spin of �xed magnitude s = ℏ

2 �
[2]. The phase of the wave function is related to the Zitterbewegung rotation phase; a concept usually
hidden in the traditional mathematical formalism of quantum mechanics, which is based on complex
numbers and matrices. However, we should remark that the concept of point-like charge in quantum
mechanics should be considered unrealistic. It violates Occam's razor principle and may be used only
as a �rst approximation. Reference [20] is a good example of working with such a �center of charge�
approximation, and it arrives at a toroidal geometry that is similar to our electron model. We note also
that in our model the value of intrinsic angular momentum for a free electron is ℏ and that the �spin�
is interpreted as the component of the angular momentum along an external magnetic �eld, as in the
Stern-Gerlach experiment. Another interesting electron model has been proposed by David L. Bergman
[11, 12]. According to this model the electron is a very thin, torus shaped, rotating charge distribution
with intrinsic angular momentum of the electron equal to its spin value s = ℏ

2 . The torus radius has a

length R = ℏ
mc and half thickness r = 8Re−

π
α , where α is the �ne structure constant.

In our work, we calculated the parameters and relations that characterize the electron, but did not
derive an electromagnetic �eld distribution for each point in space. Some recent Zitterbewegung models,
such as [21], aim to calculate the spatial distribution of the electromagnetic �eld. In particular, reference
[21] derives a circulating wave formula that is a solution of Maxwell's equation; this may help to answer
the question of how the electromagnetic Zitterbewegung wave curls up.

3.8. Conclusions

We developed a realistic description of the electron structure. We used the language of geometric
algebra, and recognized the fundamental role of the electromagnetic four-vector potential.

The application of Occam's Razor principle to Maxwell's equations suggests a Zitterbewegung in-
terpretation of quantum mechanics. The obtained results are similar but not identical to the electron
model proposed by D. Hestenes. According to this model, the electron structure consists of a current
distribution that is carried by a longitudinal electromagnetic wave: it circulates at the speed of light along
a circumference with a length equal to electron Compton wavelength. Inertia has a pure electromagnetic
origin related to the vector potential generated by the Zitterbewegung current.

�It is a delusion to think of electrons and �elds as two physically di�erent, independent entities. Since
neither can exist without the other, there is only one reality to be described, which happens to have two
di�erent aspects; and the theory ought to recognize this from the outset instead of doing things twice!� -
A. Einstein, cited in [17]

�In atomic theory, we have �elds and we have particles. The �elds and the particles are not two
di�erent things. They are two ways of describing the same thing, two di�erent points of view� - P. A. M.
Dirac, cited in [18]
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CHAPTER 4

The Aharonov-Bohm equations, �ux quantization, and the

Zitterbewegung Lagrangian
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Italy. E-mail: antoninooscar.ditommaso@unipa.it, giorgio.vassallo@unipa.it.

Nomenclature

Symbol, name, SI units, natural units (NU).

A
□
: electromagnetic four-potential [V · s ·m−1], [eV ];

A△: electromagnetic vector potential [V · s ·m−1], [eV ];
A: the norm of the electromagnetic vector potential [V · s ·m−1], [eV ];
At: time component of electromagnetic four potential [V · s ·m−1], [eV ];
a

□
: the four-vector Proca �eld [V · s ·m−1], [eV ];

a△: spatial components of the Proca �eld [V · s ·m−1], [eV ];
a: the norm of the Proca �eld, not to be confused with acceleration [V · s ·m−1], [eV ];
at: time component of the Proca �eld [V · s ·m−1], [eV ];
m: mass [kg], [eV ];
F : electromagnetic �eld bivector derived from A

□
[V · s ·m−2], [eV 2];

f : �eld bivector derived from a
□
[V · s ·m−2], [eV 2];

B: �ux density �eld [V · s ·m−2] = [T ], [eV 2];
E: electric �eld [V ·m−1], [eV 2];
V : potential energy [J = kg ·m2 · s−2], [eV ];
J

□
: four current density �eld, [A ·m−2], [eV 3];

J△: current density �eld, [A ·m−2], [eV 3];
ρ: charge density [A · s ·m−3 = C ·m−3], [eV 3];
x, y, z: space coordinates [m], [eV −1], [1.9732705 · 10−7 m ≃ 1 eV −1];
t: time variable [s], [eV −1], [6.5821220 · 10−16 s ≃ 1 eV −1];
c: light speed in vacuum [2.997 924 58 · 108 m · s−1], [1];
ℏ: reduced Planck constant (ℏ = h

2π ) [1.054 571 726 · 10
−34 J · s], [1];

µ0: permeability of vacuum [4π · 10−7 V · s ·A−1 ·m−1], [4π];
ϵ0: dielectric constant of vacuum [8.854 187 817 · 10−12 A · s · V −1 ·m−1], [ 1

4π ];

e: electron charge [1.602 176 565 · 10−19 A · s], [0.085 424 546];
α: �ne structure constant [7.2973525664 · 10−3], [7.2973525664 · 10−3];
me: electron rest mass [9.10938356 · 10−31kg], [0.5109989461 · 106eV ];
λc: electron Compton wavelength [2.426 310 2389 · 10−12 m], [1.229 588 259 · 10−5 eV −1];
KJ : Josephson constant [0.4835978525 · 1015 Hz V −1], [2.71914766 · 10−2]
re: reduced Compton electron wavelength (Compton radius) re =

λc

2π ;
rc: electron charge radius rc = αre;
Te: Zitterbewegung period Te =

2πre
c ;

ωe: Zitterbewegung angular frequency ωe =
2π
Te
;

γi: γ
2
x = γ2y = γ2z = −γ2t = 1, where {γx,γy,γz,γt} are the four basis vectors of Cl3,1 (R) Cli�ord

algebra, isomorphic to Majorana matrices algebra;
∂: ∂ = γx

∂
∂x + γy

∂
∂y + γz

∂
∂z + γt

1
c
∂
∂t ;

I: I = γxγyγzγt;
I△: I△ = γxγyγz;
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4.1. Introduction

According to Carver Mead, mainstream physics literature has a long history of hindering fundamental
conceptual reasoning, often �involving assumptions that are not clearly stated� [1]. One of these is the
unrealistic assumption of point-like shaped elementary particles with intrinsic properties as mass, charge,
angular momentum, magnetic moment and spin. According to the laws of mechanics and electromag-
netism, a point-like particle cannot have an �intrinsic angular momentum�. A magnetic moment must
necessarily be generated by a current loop, which cannot exist in a point-like particle. Furthermore, the
electric �eld generated by a point-like charged particle should have an in�nite energy. Therefore, an al-
ternative realistic approach that fully addresses these very basic problems is indispensable. We developed
a Zitterbewegung solution of the electron structure in chapter 3, according to which charged elementary
particles can be modeled by a current ring generated by a charge distribution rotating at light speed
along a circumference whose length is equal to the particle's Compton wavelength. As a consequence,
every elementary charge is always associated with a magnetic �ux quantum and every charge is coupled
to all other charges on its light cone by time-symmetric interactions [1, 9]. The aim of this chapter is to
further develop the electron Zitterbewegung model of chapter 3.

N.B. all equations enclosed in square brackets with subscript �NU � have dimensions expressed in
natural units.

4.2. The inter-related concepts of Energy, Mass, Frequency and Information

The concept of measurement plays a fundamental role in all scienti�c disciplines based on exper-
imental evidence. The most used measurement units (such as the international system, SI) are based
mainly on human conventions not directly related to fundamental constants. To simplify the conceptual
understanding of certain physical quantities it is convenient to adopt in some cases a measurement system
based on universal constants, such as the speed of light c and the Planck's quantum ℏ.

Considering that a measurement is an event localized in space and time, the quantum of action can
be seen, in some cases, as an objective entity in some respects analogous to a bit of information located
in the space-time continuum. In accordance with Heisenberg's uncertainty principle, the result of the
measurement of some values (such as angular momentum) cannot have an accuracy less than half a single
Planck's quantum. Therefore, to simplify the interpretation of physical quantities, it may be useful to
adopt a system in which both the speed of light and the quantum of action are dimensionless quantities
(pure numbers) having a unit value, i.e.: c = 1 and ℏ = 1. In this system, the constancy of light speed
makes possible to use a single measurement unit for space and time, simplifying, in many cases, the
conceptual interpretation of physical quantities. The energy of a photon, a "particle of light", is equal
to Planck's quantum multiplied by the photon angular frequency. By using the symbol T to indicate the
period of a single complete oscillation and λ the relative wavelength, it is, therefore, possible to write

(4.2.1) E = ℏω =
2πℏ
T

=
2πℏc
λ

.

By using natural units, period and wavelength coincide and the above expression is simpli�ed in

(4.2.2)

[
E = ω =

2π

T
=

2π

λ

]
NU

.

The NU subscript highlights the use of natural units for expressions contained within square brackets.
This equation indissolubly links some fundamental concepts, as space, time, energy and mass, giving the
possibility to express an energy value simply as a frequency or as the inverse of a time, or even as the
inverse of a length. Vice versa, it allows to use as a measurement unit of both space and time a value
equal to the inverse of a particular energy value as the electron-volt. Therefore, to compute a photon
wavelength in vacuum with natural units it is su�cient to divide the constant 2π by its energy. This
value will correspond exactly to the period of a complete oscillation. Hence, in natural units the inverse
of an eV can be used as a measurement unit for space and time:

L(1eV ) = 1 eV−1 ≈ 1.9732705 · 10−7 m ≈ 0.2 µm,

T(1eV ) = 1 eV−1 ≈ 6.582122 · 10−16 s ≈ 0.66 fs.

Consequently, an angular frequency can be measured in electron volts:

1 eV ≈ 1.519268 · 1015 rad s−1.
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Following these concepts, it is possible to de�ne a link between fundamental concepts of information,
space, time, frequency and energy. A "quantum of information" carried by a single photon will have a
"necessary reading time" and a "spatial dimension" inversely proportional to its energy. A simple example
is given by radio antennas (dipoles), whose length is proportional to the received (or transmitted) "radio
photons� wavelength and inversely proportional to their frequency and to the number of bits that can be
received in a unit of time. In this perspective, the concept of energy is closely linked to the "density" of
measurable information in space and in time.

4.3. The Aharonov-Bohm equations, �ux quantization, and the Zitterbewegung

Lagrangian

4.3.1. Magnetic �ux quantization. Einstein's famous E = mc2 formula becomes particularly
explanatory if expressed in natural units:

[E = m]NU .

Mass is energy and it is, therefore, possible to associate a precise amount of energy to a particle
having a given mass. Taking up the considerations made on the deep bond existing between the concepts
of space, time, frequency and energy, it is interesting trying to associate the electron rest mass me to an
angular frequency ωe, a length re and a time Te. In fact Einstein's formula can be expressed as

(4.3.1) Ee = mec
2 = ℏωe =

ℏc
re

=
h

Te
,

or adopting natural units

(4.3.2)

[
Ee = me = ωe =

1

re
=

2π

Te

]
NU

.

These constants have a simple and clear interpretation under our electron model consisting of a
current ring generated by a massless charge rotating at the speed of light along a circumference whose
radius is equal to the electron reduced Compton wavelength, de�ned as re = λc

2π ≈ 0.38616 · 10−12 m
. According to the model described in the preceding chapters, the charge is not a point-like entity. In
equation (4.3.2), ωe is the angular frequency of the circulating current, re is its circulation radius and Te
its period. The current loop is associated with a quantized magnetic �ux ΦM equal to Planck's constant
(h = 2πℏ) divided by the elementary charge e (see eq. 3.3.20 in chapter 3 ):

ΦM = h/e,

or in natural units

[ΦM = 2π/e]NU .

The above relation demonstrates that understanding magnetic �ux quantization leads to understand-
ing elementary charge quantization, and vice versa.

The charge circulation is caused by the centripetal Lorentz force due to the magnetic �eld associated
with the current loop generated by the elementary rotating charge. The value of this elementary charge,
in natural units, is a pure number and is equal to the square root of the ratio between the charge radius
rc and the the orbit radius re (see eq. 3.3.30, 3.3.31 in chapter 3):

(4.3.3)

[
e =

√
rc
re

=
√
α ≈ 0.0854245

]
NU

.

Similar models, based on the concept of "current loop", have been proposed by many authors, but
have often been ignored for their incompatibility with the most widespread interpretations of Quantum
Mechanics [2, 3, 4, 5, 6, 7]. It is interesting to remember how, already in his Nobel lecture of 1933,
P.A.M. Dirac referred to an internal high-frequency oscillation of the electron: "It is found that an electron
which seems to us to be moving slowly, must actually have a very high frequency oscillatory motion of
small amplitude superposed on the regular motion which appears to us. As a result of this oscillatory
motion, the velocity of the electron at any time equals the velocity of light. This is a prediction which
cannot be directly veri�ed by experiment, since the frequency of the oscillatory motion is so high and its
amplitude is so small". In the scienti�c literature, the German word Zitterbewegung (ZBW) is often
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used to indicate this rapid oscillation/rotation of the electron charge. The circulating electric current is
characterized by a momentum pc of purely electromagnetic nature:

pc = eA = e
ΦM
2πre

=
ℏωe
c

=
ℏ
re

= mec.

As de�ned in equation 3.3.9 of chapter 3, in this formula A = ℏ
ere

refers to the magnitude of the
vector potential seen by the rotating charge.

Multiplying the above de�ned charge momentum pc by the radius re we obtain the �intrinsic� angular
momentum ℏ of the electron:

(4.3.4) pcre = ℏ.

Using natural units the momentum pc has the dimension of energy and it is exactly equal to the
electron mass-energy at rest me: [

pc = eA = Ee =
1

re
= me = ωe

]
NU

.

Magnetic �ux quantization applies to any stable charge circulation, including electron orbitals. Let
rorb be the mean radius of an electron orbital. The wavefunction's continuity requires that:

(4.3.5) k (2πrorb) = n2π

where n is positive integer number. It follows from the pc = eA relation that the kinetic momentum
de�nes the vector potential component along the Zitterbewegung axis:

(4.3.6) pkinetic = eA⊥

Recaling the derivation of pkinetic = ℏk from chapter 2, it is now possible to determine the magnetic
�ux of an electron orbital by applying the circulation of the vector potential A⊥:

(4.3.7) ϕorb =

˛
A⊥dλ =

ˆ 2π

0

ℏk
e
rorbdϑ = k (2πrorb)

ℏ
e
= n

h

e

Therefore, the magnetic �ux of electron orbitals is also quantized by elementary magnetic �ux ΦM =
h/e. This result further illustrates the fundamental nature of magnetic �ux quantization.

4.3.2. Aharonov-Bohm equations in the Zitterbewegung electron model context. The
magnetic Aharonov-Bohm e�ect is described by a quantum law that gives the phase variation φ of the
�electron wave function� starting from the integral of the vector potential A△ along a path [8], i.e.

(4.3.8) φ =
e

ℏ

ˆ
A△ · dl.

In the proposed Zitterbewegung model, the "wave function phase" of the electron has a precise
geometric meaning and indicates the charge rotation phase. By using (4.3.8), one may verify that the
phase shift φ along the circumference of the Zitterbewegung orbit is equal exactly to 2π radians. In fact

(4.3.9) φ =
e

ℏ

˛
A△ · dl = e

ℏ

ˆ 2πre

0

Adl =
e

ℏ

ˆ 2πre

0

ℏ
ere

dl =
e

ℏ
ℏ
ere

2πre = 2π,

because the vectors A△ and dl have the same direction tangent to the elementary charge trajectory.
This result is also consistent with the prediction of the electric Aharonov-Bohm e�ect, a quantum

phenomenon that establishes the variation of phase φ as a function of the integral of electric potential V
in a time interval T , i.e.:

(4.3.10) φ =
e

ℏ

ˆ
T

V dt.
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Applying the electric Aharonov-Bohm e�ect formula to compute the phase shift φ within a Zitterbe-
wegung time interval Te =

2π
ωe
, we must obtain the expected result, i.e. φ = 2π. Let us de�ne an e�ective

electron charge radius rc via the electrostatic potential formula:

V =
e

4πε0rc
=

[
e

rc

]
NU

The corresponding Zitterbewegung time interval is:

Te =
2πre
c

= [2πre]NU .

Applying equation 4.3.10, yields the following phase shift:

(4.3.11) φ =
e

ℏ

Teˆ

0

V dt =
e

ℏ
V Te =

e

ℏ
V
2πre
c

=

[
e2

rc
2πre

]
NU

.

Recalling equations 3.3.31 and 4.3.3, we recognize that φ = 2π if rc = rcl, i.e. the classical electron
radius. This result demonstrates that the classical electron radius, which was illustrated in �gure 3.3.1,
is an e�ective radius of the electron charge distribution. However, we must keep in mind that the actual
electron charge distribution is not spherical, but has a toroidal topology shown in �gure 3.3.1.

Now, by equating the e
ℏ

ℏ
ere

2πre term of (4.3.9) and the e
ℏV

2πre
c term of (4.3.11) it is possible to

demonstrate that

At =
V

c
= A = |A△| ,

[At = V = A = |A△|]NU ,

(4.3.12) A2
□
= (A△ + γtAt)

2
= A2

△ −A2
t = 0.

The obtained electromagnetic wave-like expression further demonstrates the electron's wave nature.
We emphasize that the above relationships pertain to the electromagnetic potential �eld seen by the
electron charge distribution. By introducing the di�erential form of (4.3.10) we obtain

dφ =
e

ℏ
V dt

and this yields the phase speed

dφ

dt
= ωe =

e

ℏ
V =

e2

4πε0ℏrc
=
cα

rc
=

c

re
=
mec

2

ℏ
=
ce

ℏ
A

In natural units, the above phase speed is expressed as:

(4.3.13)

[
dφ

dt
= ωe = me = eV = eA

]
NU

4.3.3. The Zitterbewegung Lagrangian. Transversal electromagnetic waves are trivial solutions
of Maxwell's equation. Such transversal electromagnetic waves may travel millions of kilometers across
vacuum. Upon entering the curved space-time region in the vicinity of a nucleus, the trivial electromag-
netic wave may generate an electron-positron particle pair. The electromagnetic four-potential can thus
be seen as the �eld, a �Materia Prima�, from which the physical entities that we call �electrons� and
�positrons� are generated.

To calculate electron dynamics from �rst principles, we must start from the electromagnetic La-
grangian density, which was introduced in chapter 1:

L =
1

2µ0
∂A

□
∂̃A

□
=

1

2µ0
GG̃ =

1

2µ0
∥G∥2 =

1

2µ0
(S + F ) (S − F ) =

1

2µ0

(
S2 − F 2

)
=

=
1

2µ0

(
−E

2

c2
+B2 + S2 − 2

c
IE ·B

)(4.3.14)

where I is the Cli�ord pseudo-scalar, G is the generalized electromagnetic �eld, S is the electromagnetic
scalar �eld, and F is the usual scalar-free electromagnetic �eld.

The ˜ operator denotes Cli�ord reversion, which reverses the order of base vectors.
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Essentially, equation 4.3.14 expresses that the electromagnetic Lagrangian density is the square of
the generalized electromagnetic �eld strength.

As can be seen in the above expression, the electromagnetic Lagrangian density comprises two parts:

L = L⊥ + L∥

where L⊥ = 1
2µ0

(
−E2

c2 +B2
)
is the Lorentz-invariant Lagrangian density of a transversal electromag-

netic wave, and L∥ = 1
2µ0

(
S2 − 2

cIE ·B
)
is the Lorentz-invariant Lagrangian density of a longitudinal

electromagnetic wave. The transversal electromagnetic wave is well known, and has been the focus of
electromagnetism studies over the past 150 years. A pioneering exploration of the longitudinal electro-
magnetic wave solution was undertaken in chapter 2.

The L∥ = 1
2µ0

(
S2 − 2

cIE ·B
)
Lagrangian density can be also written as L∥ = J

□
· A

□
. This

equivalence was derived in equation 1.3.19. The L⊥ = 1
2µ0

(
−E2

c2 +B2
)
and L∥ = J

□
· A

□
terms are

well-known in the scienti�c literature, and are referred to as the ��eld term� and �interaction term� of
the electromagnetic Lagrangian density1.

In the following paragraphs, we show that the elementary charge is characterized by a simple Zitter-
bewegung Lagrangian L∥ that de�nes the action S :

(4.3.15) L∥ =

ˆ
J

□
·A

□
dv dt = eA · c− eV

S =

ˆ
L∥dt

where the eA term describes the Zitterbewegung momentum of the elementary charge, eV term describes
its electric energy, and J

□
is the averaged internal four-current density of the particle. The dv and dt

terms represent the in�nitesimal volume and time elements of the space-time integral.
The stationary action condition δS = 0 is can be written as:

(4.3.16) S =

ˆ
(eA · c− eV ) dt = e

ˆ
A · dl− e

ˆ
V dt = 0

δS = 0

The stationary action condition is satis�ed when the elementary charge's electromagnetic four po-
tential A

□
= A + γtV is a nilpotent vector: A2

□
= 0. We showed in the preceding section that this

A2
□
= 0 condition leads to the well-known magnetic and electric Aharonov-Bohm relations between the

electromagnetic phase φ and the electromagnetic four potential:

(4.3.17) φ =
e

ℏ

ˆ
A · dl

(4.3.18) φ =
e

ℏ

ˆ
T

V dt

Considering circular Zitterbewegung, we now show that identifying φ with the Zitterbewegung phase
also leads to the Aharonov-Bohm relations. As A and c are parallel vectors for a freely moving charge,
it's possible to substitute the dot product with the product of their norm:

L∥ = eAc− eV = eA
dl

dt
− eV

If the radius of the charge's Zitterbewegung trajectory is r, the di�erential of the displacement dl
can be substituted by the rdφ product:

dl = rdφ

L∥ = eAr
dφ

dt
− eV

1In the following, we also use the L∥ = J
□
·A

□
formulation. The signi�cance of knowing the L∥ = 1

2µ0

(
S2 − 2

c
IE ·B

)
formulation is that it reveals the connection with longitudinal electromagnetic waves.
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Consequently, the following simple conditions guarantee that the action S is always zero:

eAr = ℏ = 1

dφ

dt
= eV = eA =

1

r

r−1 =
dφ

dt
= ω = m

In natural units, the electron's or positron's mass-energy is equal to its Zitterbewegung angular speed,
to the inverse of its Zitterbewegung radius, and to the absolute value of its Zitterbewegung momentum
eA.

The eV = eA condition is equivalent to the A2
□
= 0 condition on the electromagnetic four potential,

and it is easy to see that the above listed three conditions directly lead to the Aharonov-Bohm rela-
tions. It follows that the circulating charge is characterized by a momentum p and energy Ee of purely
electromagnetic nature:

(4.3.19) (Eeγt,p)2 = eA2

where A2 is the four-vector potential seen by the electron's charge, and (Eeγt,p)2 is the energy-
momentum four-vector. Considering the general case of a moving electron, A2 has the following compo-
nents:

(4.3.20) A2 = V γt +A⊥ +A∥

where A∥ is the vector potential along the Zitterbewegung circle, A⊥ is the axial vector potential per-
pendicular to the Zitterbewegung circle, V is the electric potential, γt is the basis vector along the time
axis, and γ2t = −1.

In the classical �eld scenario, the electromagnetic �eld evolution is governed by the above-stated
δS = 0 condition of stationary action. However, elementary particles reside in an electromagnetic
vacuum noise environment. This noise e�ect is captured by the path integral formulation of quantum
mechanics. Speci�cally, the Feynman path integral is de�ned by the exponentiation of electromagnetic
action, which is given by equation 4.3.16. The probability of each path is de�ned according to the eiS

probability factor. It can be shown [13, 14] that quantum mechanics can be understood as a vacuum
noise e�ect over the δS = 0 condition of stationary action. However, given that the vacuum contains the
same noise energy at all frequencies, one may wonder why this noise e�ect is not in�nitely large. This
topic is addressed in chapter 6.

4.4. Practical applications of the Zitterbewegung Lagrangian

Reference [10] proves in great detail that superconductivity is the Bose-Einstein condensation of
conduction band electrons. However, the conventional formulation of quantum mechanics does not help
to answer the question of how and why do electrons Bose-Einstein condense. In this context, a practical
application of the Zitterbewegung Lagrangian - as de�ned by equation 4.3.15 - can be found in reference
[10], where it is used to �nd the equilibrium state of Bose-Einstein condensing electrons.

The appearance of coherent electrons may be possible not only in condensed matter, but also in
vacuum environment. For example, Johan F. Prins has observed the formation of a stable superconductive
electron structure in 10−6 mbar vacuum, in a micrometric gap between an oxygen-doped diamond cathode,
which has negative electron a�nity, and a gold-plated steel anode [11]. As a second example, Kenneth
Shoulders has reported the observation of high density charged plasma clusters, in special spark gap
devices [12]. He found that such plasma clusters comprise ∼ 1010 − 1014 electrons, with a cation content
ratio of <10−6. We anticipate the Zitterbewegung Lagrangian - as de�ned by equation 4.3.15 - to
become a useful tool for modeling coherent electron clusters, where the Coulomb repulsion is apparently
compensated by a previously unrecognized attractive force.

4.5. ESR, NMR, Spin and �Intrinsic� angular momentum

As shown in the previous paragraph, in the proposed model, the electron has an angular momentum
ℏℏℏ and a magnetic moment µB , equal to the Bohr magneton. It is, therefore, reasonable to assume that,
in presence of an external magnetic �eld, the electron is subjected, as a small gyroscope, to a torque
τ and to a Larmor precession with frequency ωp. The only di�erence with a classical gyroscope is the
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quantization of the ℏ∥ component of the angular momentum ℏℏℏ along the external �ux density �eld BE .

This component can take only two possible spin values, namely ℏ∥ = ± 1
2ℏ (see chapter 3 , section 3.3.2).

The two spin values will correspond to two possible values for the angle θ formed between the angular
momentum vector and the external magnetic �eld vector: θ ∈

{
π
3 ,

2π
3

}
:

ℏ2∥ + ℏ2⊥ = ℏ2,

ℏ∥ = ±1

2
ℏ.

The torque exerted by the external �ux density �eld BE is

τ = |µB ×BE | = µBBE sin (θ)

and the related Larmor precession angular frequency is

(4.5.1) ωp =
BEµB

ℏ
.

The precession angular frequency will correspond to two possible energy levels:

EH = ℏωp if θ =
2π

3

and

EL = −ℏωp if θ =
π

3
.

The di�erence of energy levels corresponds to the Spin Electronic Resonance (ESR) frequency νESR:

(4.5.2) ∆E = EH − EL = 2ℏωp = ℏωESR = hνESR.

From (4.5.2) and (4.5.1) it is possible to determine the ESR frequency as

(4.5.3) νESR = 2
BEµB
h

.

For instance, an external magnetic �ux density �eld equal to BE = 1.5 T yields a frequency νESR ≈
42 GHz. The ESR method is already used for various applications, such as quantum computing or
chemical analysis, even though its theoretical foundations have been lacking. With a proper understanding
of the ESR theory, scientists will have a solid foundation to guide their progress.

By calling s the spin value and µ the nuclear magnetic moment we can also generalize (4.5.3) for
particles other than the electron. In this case the term used is Nuclear Magnetic Resonance (NMR)
frequency, which is equal to

(4.5.4) νNMR ≈ BEµ

hs
.

For instance, for isotope 7
3Li, with s = 3

2 , µ ≈ 1.645 · 10−26 and BE = 1.5 T, the NMR frequency is

νNMR ≈ 24.8 MHz, whereas for isotope 11
5 B we have s = 3

2 , µ ≈ 1.36·10−26 J · T−1 and NMR frequency is

νNMR ≈ 20.5 MHz. Another example deals with isotope 87
38Sr with s =

9
2 and µ ≈ 5.52 ·10−27 J · T−1. In

this case NMR frequency is νNMR ≈ 278 kHz for BE = 0.15 T with a Larmor frequency
ωp

2π = 1
2νNMR ≈

139 kHz.
The electron, in the presence of an external magnetic �eld, is subjected to Larmor precession and its

spin value ±ℏ
2 is interpreted as the intrinsic angular momentum component parallel to the magnetic �eld.

It is interesting to note that a hypothetical technology, able to align the intrinsic angular momentum of
a su�cient number of electrons, could favor the formation of a coherent superconducting and super-�uid
condensate state. This possibility is explored in reference [10].
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4.6. Conclusions

In this chapter a simple Zitterbewegung electron model has been introduced, where the concepts
of mass-energy, momentum, magnetic momentum and spin naturally emerge from its geometric and
electromagnetic parameters, thus avoiding the obscure concept of �intrinsic property� of a �point-like�
particle. Using only electromagnetic and geometric concepts, an insightful interpretation of the Aharonov-
Bohm equations has been presented. The results of this chapter further demonstrate that the phase of a
quantum mechanical wave-function is derived from the Zitterbewegung wave.

The Electronic Spin Resonance (ESR) frequency has been computed starting from a spin model
based on the Larmor precession frequency of Zitterbewegung rotation plane.
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CHAPTER 5

The Dirac equation and Occam's razor

Andras Kovacs[1]

[1] Exafuse. E-mail: andras.kovacs@broadbit.com

5.1. Introduction

The Dirac equation is considered to be the most important equation of quantum mechanics because its
solutions allow precise calculation of electron orbitals' binding energies. The Dirac equation is generally
known to be �spinor �eld� valued, but the intuitive physical meaning of this statement remains unclear in
most textbooks. It also remains unclear why Nature would choose to operate with such complex-looking
Dirac gamma matrices. The challenge is to develop a clear interpretation of the Dirac equation.

Important progress was made in this �eld by David Hestenes and William Baylis, who recognized
that a spinor �eld represents Lorentz boost and spatial rotations of the particle orientation. With their
approach, the spinor value factorizes into a scalar valued probability density, and representations of a
Lorentz boost and a spatial rotation. All of these factors have a well-understood physical meaning. The
corresponding formulations of the Dirac equation are referred to as the Dirac-Hestenes and Dirac-Baylis
equations. These approaches are discussed in references [1, 2], along with applications that demonstrate
the utility these new insights.

We showed in chapter 4 that the electron's probability distribution is de�ned by a path integral,
formulated via an exponentiated Lagrangian action. In reference [3], the Schrödinger equation is derived
from this exponentiated Lagrangian action. Similarly, reference [4] shows that the path integral formula-
tion corresponds to a maximum entropy random walk process, and also derives the Schrödinger equation
via this approach. All these results imply a scalar valued probability density representation.

Starting from the ϵ2 − (pc)
2
=
(
mc2

)2
energy-momentum relationship, we demonstrate a simple

formulation of the Dirac equation, where the probability density �eld is scalar valued and represents the
electron's energy and momentum density. Most importantly, we show how the Dirac equation's mass
term also demonstrates the previously developed concept of electromagnetic �eld energy based electron
mass.

5.2. A simple formulation of the Klein-Gordon and Dirac equations

5.2.1. Conceptual formulation. Macroscopically, the acceleration of charges produces transversal
electromagnetic waves. This macroscopic situation changes when the energy of a harmonically oscillating
charge coincides with the noise �oor, which is represented by the Heisenberg uncertainty relation. Under
such a quantum mechanical scenario, a radiationless equilibrium state is obtained. In the 1920s, Dirac
discovered that these radiationless equilibrium states can be found by solving the equation named after
him, which is a di�erential equation over the so-called �four-component spinor �eld�.

In the conventional Dirac equation context, a complex valued spinor wavefunction is denoted by ψ.
The spinor �eld is de�ned as the quantum mechanical wavefunction whose time-wise derivative yields
the particle energy, and whose spatial derivative in a certain direction yields canonical momentum along
that direction. Since ψ is a quantum mechanical �eld, the quantity ψψ̄ gives the particle's probability
density distribution.

Consider a plane-wave spinor �eld: ψ = ψ0e
i(Ωt−K·r). The Dirac equation's main concept is that

spinor �eld's di�erentiation along the time coordinate gives ℏ∂tψ = iℏΩψ0e
i(Ωt−K·r) = iϵψ, where iϵ

represents an imaginary energy eigenvalue of the wavefunction. Similarly, di�erentiation along a space
coordinate gives the imaginary momentum eigenvalue.

For any wavefunction, the ϵ2−(pc)
2
=
(
mc2

)2
energy-momentum relation turns into the Klein-Gordon

equation:

(5.2.1) i2ℏ2
(

1

c2
∂2t − ∂2x − ∂2y − ∂2z

)
ψ = − (mc)

2
ψ
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Using the above stated ψ formulas, it is easy to see that the Klein-Gordon equation is equivalent to

the ϵ2 − (pc)
2
=
(
mc2

)2
energy-momentum relation.

Now let us �nd a linear equation for ψ, whose solution is also a solution of the above Klein-Gordon
equation. We write this linear equation using the following matrix notation:

(5.2.2) iℏ
(
γ0

1

c
∂t − γ1∂x − γ2∂y − γ3∂z

)
ψ = mcψ

The above equation is the Dirac equation. It implies the Klein-Gordon equation if the γµ matrices
satisfy the following properties:

(5.2.3) γ20 = I, γ21 = γ22 = γ23 = −I

(5.2.4) γiγj = −γjγi (i ̸= j)

It is recognized that the above relations are the same as the Cli�ord commutation relations. The
spinor geometry of the ψ �eld is equivalent to the Cli�ord geometry. There are several possible choices
to write the Dirac γµ matrices. Dirac originally discovered the following matrix representation of Cli�ord
algebra:

(5.2.5) γ0 =

(
I 0
0 −I

)
, γ1 =

(
0 −σx
σx 0

)
, γ2 =

(
0 −σy
σy 0

)
, γ3 =

(
0 −σz
σz 0

)
where I is the identity matrix and σi are the Pauli spin-matrices. This establishes the equivalence between
the Dirac and Klein-Gordon equations.

Instead of working with a matrix representation of base elements, we can choose to write the Dirac
equation using Cli�ord bases, using the same notation as in previous chapters:

(5.2.6) Iℏ∂ψ = mcψ

where I is the Cli�ord pseudo-scalar, and the ∂ operator is de�ned according to equation 1.2.2: i.e. it is
used in the same way as in the preceding chapters. This analysis of the Dirac equation also sheds light
on why the imaginary unit i appears in the Dirac equation; it is the Cli�ord pseudo-scalar γtγxγyγz. The
traditional way of treating i just as an imaginary number occults its geometric meaning of being the unit
of space-time volume.

In summary, we obtained a mathematically simple formulation of the Dirac equation, which has a
clear geometric meaning, and established the equivalence between the Dirac and Klein-Gordon equations.

5.2.2. The dimensionality of the mass term. We established that the space-time di�erential
of ψ yields the energy-momentum eigenvalues of a particle. It was shown in the previous chapters that
the energy-momentum P

□
of a particle with electric charge e is given by the P

□
= eA

□
relationship,

where A
□
is the vector potential seen by the electric charge. Since A

□
means here the vector potential

seen by the electric charge, an externally applied vector potential adds onto this vector potential seen by
the electric charge, and thus we directly obtain the e�ect of external electromagnetic �elds on the Dirac
equation:

(5.2.7) Iℏ∂ψ = mcψ + IeAapplied

The above equation was historically validated by comparing the calculated energy levels of electron
orbitals against experimental transition energy measurements.

Term Dimension

ψ Scalar
I∂ψ Tri-vector
eA Vector
IeA Tri-vector
mc Tri-vector

Table 1. The dimension of terms appearing in the Dirac equation
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Let us look at the dimension of the terms appearing in equation 5.2.7. ψ is a scalar, ∂ψ becomes
Cli�ord vector, and thus we get a tri-vector upon further multiplication by the pseudoscalar I. On
the right hand side eAapplied is a Cli�ord vector, and thus IeAapplied also becomes tri-vector. These
relationships are summarized in table 1, and show that the dimensionality of the mass term m is a tri-
vector. In this way, equation 5.2.7 is yet again telling us that the particle mass m is the result of �eld
energy integration over a volume element, as derived in chapter 3, and not just some �inherent scalar
property of an abstract point particle�. I.e. this dimensional analysis con�rms that particle mass is the
integral of the electromagnetic energy density.

Instead of a tri-vector mass representation, we can switch to a vectorial mass representation:

(5.2.8) Iℏ∂ψ = mcψ ⇔ ℏ∂ψ = −mcψ

where Im ≡ m is the tri-vector representation of mass, while m is the vector representation of mass. It
follows from the dimensional analysis of the above equations that as long as ψ is scalar, mass must be
represented as either a vector or a tri-vector quantity, but certainly can no longer be scalar quantity. The
above equations highlight the equivalence between these two mass representations. This might strike the
reader as odd: all textbook discussions of the Dirac equation consider mass to be a scalar quantity, even
geometric algebra oriented studies.

It is interesting to note that Giorgio Vassallo derives a very similar equation to 5.2.8 in chapter 4 of
reference [5], but it describes the electron's Zitterbewegung instead of probability distribution and it is
expressed in terms of electromagnetic vector potential. Perhaps chapter 4 of reference [5] is relevant for
learning how to formulate the Dirac equation in terms of electromagnetic waves.

Let us recall that our starting point was the wish to study solutions of the scalar type ψ = ψ0e
i(Ωt−K·r)

quantum mechanical wavefunction. We found that working with the Dirac equation implies that either
m is not scalar or that ψ is not scalar. Historically, scientists made the �ψ is not scalar� choice, and ψ
was understood as a spinor-valued function. Based on the above-presented dimensional analysis, the �m
is not scalar� choice has also a strong justi�cation. Therefore, the vectorial representation of m will be
pursued further in this chapter.

Into which direction is m pointing? As a particle moves through the four-dimensional spacetime,
equation 5.2.8 implies that m is pointing along the particle's spacetime trajectory. In the particle's rest
frame, the m vector is pointing into the time direction. It is clear from this analysis that a hypothetical
�negative energy� state represents a particle traveling backwards in time. Schwinger and Feynman indeed
modeled positrons as particles traveling backwards in time. However, in reality all particles travel forward
in time; the Dirac equation's �negative energy states� are therefore un-physical, and have nothing to do
with positrons. This is further demonstrated by the fact that an electron-positron annihilation event
releases 2·511 keV energy, implying that the positron energy is +511 keV. The only di�erence between
an electron and a positron is in their electromagnetic waves' scalar components, which correspond to
opposite charge values.

5.3. Can the Zitterbewegung frequency be obtained from the Dirac equation?

In quantum theory, a so-called Zitterbewegung term appears in the free electron a solution of the
Dirac equation, and it was �rstly calculated by Schrödinger [6]. Taking the Heisenberg picture, and
solving the Dirac equation for the electron position yields a high frequency oscillation term, with the
corresponding oscillation velocity being the speed of light. This constant velocity implies a circular
Zitterbewegung oscillation at light-speed. The details of this calculation can be found for example on
pages 322-323 of [7]. Such a calculation yields an oscillation angular frequency of 2mc2/ℏ and oscillation
amplitude of ℏ/2mc. Such a frequency di�ers by a factor of two from the mc2/ℏ De Broglie frequency
of electromagnetic wave oscillation; this discrepancy led to a long-standing ambiguity between the two
values. In order to clear up this ambiguity, we address the question of whether the Dirac equation based
electron position calculation can be extrapolated to the high frequency limit of electromagnetic wave
oscillation.

As we saw in the previous section, the physical meaning of the Dirac spinor �eld is that its di�er-
entiation yields energy-momentum eigenvalues. The analogous de�nition of an electromagnetic spinor is
the following:

(5.3.1) Iℏ∂ψEM =
1

2
GγtG̃
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where G is the electromagnetic �eld, and we used the electromagnetic energy-momentum expression from
chapter 1. This is the applicable de�nition for the high-frequency limit, in which we are directly observing
the electromagnetic wave.

A harmonic electromagnetic spinor has ψEM = ψ0e
i(Ωt−k·r) form. In chapter 1 we showed that each

term of the electromagnetic energy-momentum comprises a multiplication between two selections from the

S, E, or B �eld; this can be directly seen also from the 1
2GγtG̃ expression. When the electromagnetic �eld

oscillates at an angular frequency ω, we have S ∼ eiωt, E ∼ eiωt, and B ∼ eiωt. Therefore, multiplications
between any two selections from S, E, or B yield ∂ψEM ∼ ei2ωt, and since a di�erentiation operator does
not change the frequency we get ψEM ∼ ei2ωt. Thereby we obtain an important relationship: Ω = 2ω.
This means that the frequency of the electromagnetic spinor �eld is twice the electromagnetic wave
frequency. In the high frequency limit, the 2mc2/ℏ angular frequency obtained via Dirac equation is NOT
a physical oscillation frequency; it is twice the mc2/ℏ angular frequency of the underlying electromagnetic
wave.

We �nish this chapter by summarizing the three major quantum theory related clari�cations presented
in this book. In each case, we corrected a factor of two mistake that went unnoticed for nearly a century:

(1) The Dirac spinor �eld is considered to describe a �half-spin� particle. Under an applied mag-
netic �eld, the electron's angular momentum measurement yields ℏ

2 . This measured value was
interpreted as the internal angular momentum of the electron, despite the obvious contradiction
with angular momentum conservation in electron-positron annihilations that produce two cir-
cularly polarized photons, each carrying ℏ angular momentum. Regarding measurements, one
must realize that under an applied magnetic �eld the electron's angular momentum is precessing
around magnetic �eld lines, and the measured ℏ

2 value is only its projection onto the direction
of the applied magnetic �eld. The equations of this precession are described in chapter 3. The
electron's internal angular momentum value is ℏ. Our interpretation is in line with the oper-
ating principle of NMR devices, while the traditional interpretation of the measured ℏ

2 value is
contradictory also to the operating principle of commercial NMR technology.

(2) Schrödinger suggested in 1930 to interpret the high frequency extrapolation of the Dirac equation
as a real spatial 2mc2/ℏ oscillation frequency of an elementary particle [6]. However, the above
presented analysis reveals that the correct Zitterbewegung frequency of the electromagnetic
wave is mc2/ℏ. There is no spatial oscillation at 2mc2/ℏ angular frequency.

(3) We showed in chapter 4 that an individual electron is associated with an h/emagnetic �ux value.
However, superconductivity-related measurements show that an externally applied magnetic
�eld penetrates superconductors in steps of h/2e magnetic �ux quanta. Such superconductivity
related measurements are performed over a multi-electron system; the superconductivity-related
h/2e magnetic �ux quantum must not be automatically associated with the magnetic �ux value
of an elementary particle's Zitterbewegung.
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CHAPTER 6

The Lamb shift as a spectrometer of electron-noise interaction

Andras Kovacs[1]

[1] Exafuse. E-mail: andras.kovacs@broadbit.com

6.1. Introduction

The electron wavefunction exists not in empty space, but in a vacuum �lled by electromagnetic noise.
This electromagnetic vacuum noise can be experimentally measured [5], and it also produces the well-
known Casimir e�ect. One may ask how the electromagnetic vacuum noise interacts with the electron
wavefunction. This question is closely related to a second fundamental issue: why does the oscillating
ground state wavefunction not radiate electromagnetic energy, i.e. how to reconcile the existence of
non-radiating quantum mechanical states with Maxwell's equation? Taking the Dirac equation based
eigenstate calculation at face value, it yields accurate electron binding energy while bypassing both
questions. This apparent paradox has puzzled generations of physicists. A recently suggested resolution
to these puzzles is that any stable wavefunction state does in fact radiate energy according to Maxwell's
equation, but also absorbs vacuum noise energy at the same rate, thus achieving a thermodynamic
equilibrium [6, 7]. This interpretation is strongly supported by the electromagnetic vacuum noise being
de�ned by Planck's constant; the speci�c vacuum noise intensity formulas will be given in the next
section. It means that the Planck's constant, which we �nd in the Dirac equation, is in fact de�ned by
the intensity of electromagnetic vacuum noise.

The experimentally observed electron-light interactions depend on whether the incoming light is more
intense than the vacuum noise, or whether it is just the vacuum noise. Above the vacuum noise intensity,
the bound electron wavefunction interacts with the entire electromagnetic spectrum. The speci�c process
that quantitatively describes electron-light interaction depends on the incoming light frequency: these
processes are known as the photo-electric e�ect (light wavelength is comparable to the Bohr radius),
Thomson-scattering (light wavelength is in the x-ray range), and Compton scattering (light wavelength is
comparable to the classical electron radius). Regarding low frequencies, a bound electron can be ionized
even by microwave radiation, provided that its intensity is su�ciently large [2].

The situation is dramatically di�erent for electron-light interactions at the vacuum noise intensity.
The standing wave state of any electron wavefunction oscillates at one well-de�ned frequency. It follows
that the electron should radiate energy only at that speci�c standing wave frequency. Regarding counter-
balancing energy absorption from vacuum noise, there is a long history of interpreting quantum mechanics
as a stochastic process of such noise energy absorption [8, 9]. What is the counter-balancing noise
frequency range in which the electron absorbs energy from vacuum noise? Despite the presence of high
frequency vacuum noise, the stability of matter around us demonstrates that the Thomson-scattering and
Compton scattering cross-sections become zero at the vacuum noise intensity. Despite the presence of low
frequency vacuum noise, there is no measurable Stark e�ect without applied electric �elds, demonstrating
that the low-frequency interaction cross-section also becomes zero at the vacuum noise intensity. For
some reason, the vacuum noise interacts with electrons only in a speci�c frequency range. Identifying
the e�ective electron-noise interaction frequency range is one objective of this chapter; our main result is
that this frequency range can be identi�ed from the Lamb shift e�ect.

The Lamb shift e�ect is experimentally observed only for s-state involving transitions, whose the
wavefunction probability is non-zero at the nucleus. The Lamb shift e�ect is therefore generally inter-
preted as a noise-induced �blurring� of the electron wavefunction; the measurements on the following
pages indicate that such a blurring radius is in the tens of femtometers range for hydrogen. The Lamb-
shift related blurring radius is thus an order of magnitude smaller than the reduced Compton radius,
which de�nes the electron's Zitterbewegung radius. One might therefore anticipate that the electron's
Zitterbewegung structure should also cause a measurable binding energy impact around the nucleus,
generating an order of magnitude larger energy shift in s-states than the Lamb shift. However, that
anticipation is contradicted by measurements, and to the best of our knowledge this contradiction has
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not been addressed in prior studies. A secondary objective of our present work is therefore to resolve this
apparent paradox by clarifying what happens to electron Zitterbewegung in the nuclear vicinity.

6.2. Electron-noise interaction based Lamb-shift accounting

6.2.1. Electromagnetic vacuum �uctuations. One way to characterize electromagnetic vacuum
�uctuation is to describe its average electric and magnetic �eld intensity. In a harmonic wave, the average

�eld intesities are related to the energy density as 1
2

(
ε0E

2 + 1
µ0
B2
)
= ε0Ē

2 = B̄2

µ0
. The average vacuum

�eld intensity is given by the following formula [5]:

(6.2.1) ε0Ē
2 =

B̄2

µ0
=

ℏc
4π2

ˆ ∞

0

k3dk

where k is the wavenumber of the given wave. There is no special wavelength; each electromagnetic
wavelength contributes uniformly to the �eld intensity of the vacuum �uctuation. Such spectral distri-
bution is the only Lorentz invariant possibility - under non-accelerating frame transformations. If there
was any other type of spectral distribution in the vacuum, it would be subject to Doppler shift in various
reference frames, and our perception of the vacuum would then depend on our frame of reference. We
emphasize that equation 6.2.1 is not just a theory for explaining the Casimir force measurements, but
was also directly measured in reference [5].

We rewrite the above formula as follows:

(6.2.2) ε0Ē
2 =

B̄2

µ0
=

ℏc
4π2

ˆ ∞

0

k3dk =
ℏc

16π3
4π

ˆ ∞

0

kk2dk =

=
ℏc

16π3

˚ ∞

0

k d3k =
1

8π3

˚ ∞

0

(
1

2
ℏω
)
d3k =

1

V

∑
k

1

2
ℏω

where V is a unit volume element. This result implies that each possible vacuum oscillation mode has
1
2ℏω energy, which is generally referred to as the �zero-point energy� of the electromagnetic noise �oor.
The above expression is the �eld intensity integration over the abstract space of all possible wavenumbers,
and this form will be used in the Lamb shift calculation. The overall electric �eld intensity can also be
written as an integration over its spectral components:

(6.2.3) ε0Ē
2 =

V

8π3

˚ ∞

0

ε0Ē
2
k d

3k

From the above equations we get the relationship between Ēk and k:

(6.2.4) V Ē2
k =

ℏc
2ε0

k

6.2.2. A naive approach to the electron-noise interaction modeling. As the electric �eld of
a harmonic noise component pushes the electron back-and-forth, it �blurs out� the electron's position.
To characterize this blurring, we consider a stationary point-particle electron, and calculate the mean
distance δrk into which the noise component with wavenumber k pushes the electron.

The maximum and mean electric �eld intensities of a harmonic noise component are related by
the E2

max = 2Ē2 relationship. The harmonic noise component accelerates the electron according to
the a = eEmax

m sin (ωt) relationship. Consequently, the displacement generating the electron blur is

x = eEmax

m ω−2 sin (ωt) = eEmax

m (kc)
−2

sin (ωt). In a harmonic oscillation, the maximum and mean

displacements are related by the x2max = 2x̄2 relationship.
As the above relationships hold independently for each spatial direction, we are now able to estimate

the mean displacement δrk as follows:

(6.2.5) (δrk)
2
stationary =

(
eĒk
m

)2

(kc)
−4

where the k index labels the displacement caused by the k wavenumbered noise component.
While this naive approach is a useful �rst step, it needs adjustments for the practical purpose of

Lamb shift calculation. The Lamb shift applies to a radially oscillating electron, and its e�ect arises in
a close nuclear proximity. In that context, the electron is neither stationary or point-like.
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In order to clarify the applicable electron-noise interaction model, we must study the radially oscil-
lating electron's Zitterbewegung dynamics.

6.2.3. The radially oscillating electron's Zitterbewegung topology. Some isotopes are ca-
pable of capturing electrons into their nuclear structure; mainly inner-shell electrons are captured. For
some isotopes, such as 3He, it only takes a few keV energy to capture electrons: such small energy cannot
alter the electron structure prior to its capture. This implies that, near the nucleus, radially oscillating
electron converges into a Zitterbewegung structure that enables its capture by a few femtometers sized
nucleus.

The electron's total energy remains invariant during radial oscillation: it may be described as the
back-and-forth conversion of potential and kinetic energies. Recalling the Aharonov-Bohm equations,
given by equations 4.3.8 and 4.3.10, let us apply them in the context of radial oscillation.

Taking the 1
T = ω

2π = m0c
2

h Zitterbewegung frequency of a free electron, and applying the electric
Aharonov-Bohm formula to compute the 2π phase shift within a time interval T , we can evaluate the
potential V experienced by the electron charge.

Let us consider the electron's radial oscillation around a proton. When the electron charge is centered
around the proton, the electron charge experiences V → 0 as the two charges' potential �elds cancel out.
The electric Aharonov-Bohm formula implies that the electron's Zitterbewegung frequency goes to zero
near the oscillation mid-point. Nevertheless, we showed in chapter 1 that charge conservation requires
that the electric charge moves at the speed of light, and therefore in this mid-point region the electron
charge moves at the speed of light along a nearly straight line trajectory. In the case of a higher nuclear
charge, the region of straight line charge trajectory extends radially further. Figure 6.2.1 illustrates a
radially oscillating electron's Zitterbewegung trajectory.

Figure 6.2.1. An illustration of a radially oscillating electron's Zitterbewegung trajec-
tory. Away from the nucleus, the electron charge's light-speed trajectory converges to
the circular Zitterbewegung movement of a free electron. Near the nucleus, the electron
charge's light-speed trajectory converges to a straight line; the nuclear electron's light-
speed trajectory is therefore also a straight line in free space.

With this background, we may consider how electromagnetic noise impacts the electron near the
nucleus.

6.2.4. Mean electron displacement. As before, maximum and mean electric �eld intensities of
a harmonic noise component are related by the E2

max = 2Ē2 relationship. Without the noise e�ect, a
radially oscillating electron goes directly through the nucleus. We are interested in the noise component
that is perpendicular to the direction of a radially incoming electron; only this perpendicular component
causes a deviation of the closest electron-nucleus approach. Therefore, we are ignoring the �eld component
in the electron's direction of motion; the applicable �eld intensity is E2

⊥max = 4
3 Ē

2.
In the static electron case, the electric noise component accelerates the electron according to the

a = eE⊥max

m sin (ωt) relationship. As illustrated in �gure 3.3.3, the electron's kinetic acceleration and
speed are perpendicular to the static electron's Zitterbewegung trajectory. The key insight is that the
acceleration of a static electron is completely analogous to the action of a perpendicular force onto a
linear Zitterbewegung trajectory.

Consequently, the electric displacement generating the electron blur is x = eE⊥max

m ω−2 sin (ωt) =
eE⊥max

m (kc)
−2

sin (ωt). In a harmonic oscillation, the maximum and mean displacements are related by

the x2max = 2x̄2 relationship.
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We are now able to estimate the mean electric displacement as follows:

(6.2.6) (δrk)
2
e =

2

3

(
eĒk
m

)2

(kc)
−4

In the vicinity of a proton, the electron's linear Zitterbewegung trajectory means that we must
consider magnetic displacement as well. In that central region, the magnetic noise component accelerates
the electron according to the Lorentz force law: a = ecB⊥max

m sin (ωt). The mean magnetic displacement
is then calculated analogously to the electric case:

(6.2.7) (δrk)
2
m =

2

3

(
ecB̄k
m

)2

(kc)
−4

=
2

3

(
eĒk
m

)2

(kc)
−4

where we used equation 6.2.1 for the relation between the mean magnetic and electric �eld components.
The k wavenumbered electromagnetic noise thus leads to the following mean electron displacement

from the nucleus:

(6.2.8) (δrk)
2
= (δrk)

2
e + (δrk)

2
m =

4

3

(
eĒk
m

)2

(kc)
−4

6.2.5. Electron-noise interaction based Lamb shift calculation. The s and p electron orbital
wavefunctions are calculated from the Dirac equation, according to the well-known methodology explained
in [1]. The following formulas describe the radial part of the wavefunctions which are relevant to this
section:

(6.2.9) ψ1s (r) = 2

(
Z

a0

) 3
2

e−
Z
a0
r

(6.2.10) ψ2s (r) =
1

2
√
2

(
Z

a0

) 3
2
(
2− Z

a0
r

)
e−

Z
2a0

r

(6.2.11) ψ2p (r) =
1

2
√
6

(
Z

a0

) 3
2 Z

a0
re−

Z
2a0

r

(6.2.12) ψ3s (r) =
2

81
√
3

(
Z

a0

) 3
2

(
27− 18

Z

a0
r + 2

(
Z

a0
r

)2
)
e−

Z
3a0

r

(6.2.13) ψ3p (r) =
4

81
√
6

(
Z

a0

) 3
2

(
6Z

a0
r −

(
Z

a0
r

)2
)
e−

Z
3a0

r

where r is the radial coordinate, Z is the nuclear charge, and a0 is the Bohr radius parameter. The Bohr
radius depends also on the nuclear mass:

a0 =
ℏ

mreducedcα
=

ℏ
cα

me +mn

memn

where the mreduced = memn

me+mn
parameter indicates that the me electron mass and mn nuclear mass

oscillate around their center of mass.
The electrostatic potential energy of the ψ2s and ψ2p functions is exactly the same. Therefore,

according to the virial theorem, the kinetic energy and binding energy should also be the same in both
cases. Nonetheless measurements reveal a small di�erence between the energy of these two states; this
di�erence is referred to as the Lamb shift. Likewise, the electrostatic potential energy of the ψ3s and ψ3p

functions is exactly the same, yet there is also a measured Lamb shift. The Lamb shift is a tiny e�ect;
the binding energy of the above mentioned two electron states di�ers by about one part in a million.

In the following paragraphs we calculate the interaction between the electromagnetic vacuum �uctu-
ations and a radially oscillating electron. The calculation methodology is based on the idea introduced
by Welton in [3], which we develop into a simpler and assumption-free calculation.

How to add up the contributions of various wavenumbered noise components? Since the various noise
wavelengths are independent of each other, their contributions are adding up in quadrature:
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(6.2.14) (δr)
2
=
∑
k

(δrk)
2

We now rewrite the above summation as an integration over the possible wave numbers, replacing∑
k by V

8π3

˝
d3k. Using equation 6.2.8, the integral formula thus takes the following form:

(6.2.15) (δr)
2
=

V

8π3

˚
4

3

(
eĒk
m

)2

(kc)
−4

d3k =
1

16π3

4

3

e2ℏ
ε0m2c3

˚
kk−4 d3k =

=
4

3

e2ℏ
4π2ε0m2c3

ˆ kmax

kmin

1

k
dk =

( e

mc2

)2 ℏc
3π2ε0

ln

(
kmax
kmin

)
In the above equation, we substituted in the average �eld intensity formula according to equation

6.2.4. The
(

e
mc2

)2 ℏc
3π2ε0

factor evaluates to (21.487 fm)2.
The above displacement formula yields in�nity if either kmin goes to zero or kmax goes to in�nity.

Recognizing this issue, Welton and Bethe chose kmin = 17.8 · RH and kmax = mec
ℏ = ωe

c , where RH is
the hydrogen's Rydberg constant. According to references [3, 4], these constants were set to yield the
correct Lamb shift energy for hydrogen, which was experimentally measured at that time. As quantum
mechanical transitions from the ground state approach towards this continuum, the limiting value of their
transition energy is characterized by the Rydberg constant R, which denotes the lowest k value capable of
generating a free electron from its ground state. In the heaviest elements, the Rydberg constant becomes
the same order of magnitude as ωe

c , and thus 17.8·R becomes larger than kmax, which shows that Welton's
and Bethe's formulas cannot be correct.

In our work, we treat kmax

kmin
as an experimentally determined input parameter. As can be seen from

equation 6.2.15, only this ratio is relevant for the Lamb shift calculation, not the actual numbers. As
will be shown in the following paragraphs, the kmax

kmin
= 2π ratio yields the experimentally correct Lamb

shift values; that is a surprisingly tight ratio for the noise response. In contrast, the kmin and kmax
values chosen by Welton and Bethe evaluate to kmax

kmin
= 13265 for hydrogen; that is very di�erent from

the experimentally correct number, and again invalidates their calculation.

With our kmax

kmin
= 2π input parameter choice, the ln

(
kmax

kmin

)
factor evaluates to ln

(
kmax

kmin

)
=1.838.

This relatively small number means that the spectral range, where the bound electron responds to vacuum
noise in the same way as free particle, is actually quite narrow. From equation 6.2.15, the δr parameter
evaluates to 29.125 fm.

In order to evaluate the e�ect of the δr parameter on the average potential, we calculate the �rst and

second order Taylor expansion terms of the potential at −→r +
−→
ξ , where

−→
ξ is a small random displacement

from −→r :

(6.2.16) U
(−→r +

−→
ξ
)
= U (−→r ) +

−→
ξ · ∇U (−→r ) + 1

2

∑
ij

ξiξj∂i∂jU (−→r )

The timewise averages of
−→
ξ are ξ̄ = 0 and ξiξj = 1

3

−̄→
ξ 2δij = 1

3 (δr)
2
δij , where δij is the Kronecker

delta symbol. The 1
3 factor appears since the variance of a random displacement is equally split among

the three spatial dimensions. We evaluate the time averaged potential value at some location:

(6.2.17) U
(−→r +

−→
ξ
)
= U (−→r ) + 1

6
(δr)

2 ∇2U (−→r )

The second term of the above equation gives the Lamb shift e�ect. ∇2U (−→r ) is non-zero only at the
nucleus, and we use Gauss' law to evaluate it:

(6.2.18) ∇2U (−→r ) = −∇2 Ze

4πϵ0r
=
ρ (−→r )
ϵ0

In the above expression, the ρ (−→r ) symbol denotes the charge density at a given coordinate −→r . Now
we can evaluate the electron's potential energy by integrating over the radial coordinate:

(6.2.19) Up = e

ˆ
ψ2 (r)U4πr2dr = e

ˆ
ψ2 (r)U (r) 4πr2dr +

Ze2

6ϵ0
(δr)

2
ψ2 (0)
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The �rst term of the above formula is the usual Coulomb potential energy, and the second term is
the Lamb shift of this potential. The relationship between the electron's potential and kinetic energies
is given by the virial theorem. In the non-relativistic limit, the electron's kinetic energy is half of its
electrostatic potential, and we may write the Lamb shift of the electron energy as follows:

(6.2.20) ELamb =
Ze2

12ϵ0
(δr)

2
ψ2 (0)

Equation 6.2.20 is remarkable because we already have all the information for evaluating it. The p
type wavefunction has a vanishing probability at the origin, while the s type wavefunction has a non-zero
probability at the origin. Therefore the Lamb shift in�uences the potential energy of s type wavefunctions
only.

We use the experimental 2s → 2p and 3s → 3p Lamb shift values of hydrogen and muonium for
validating our calculation. The results are shown in table 1; our kmax

kmin
parameter choice indeed gives the

rather precise Lamb shift values, with less than 2% error. The nuclear mass impacts the binding energy
calculation via the a0 parameter's above-described dependence on the nuclear mass; the correct nuclear
mass accounting of our calculation is validated by the muonium entry of table 1.

Orbital Nucleus Calculated Experimental
transition type s− p Lamb shift s− p Lamb shift

2s→ 2p p+ 1044 MHz 1058 MHz
2s→ 2p µ+ 1037 MHz 1047 MHz
3s→ 3p p+ 310 MHz 315 MHz

Table 1. The calculated and experimental 2s→ 2p and 3s→ 3p Lamb shift values for
atomic hydrogen, and 2s→ 2p Lamb shift values for muonium. The calculation is based
on equation 6.2.20.

While the Lamb shift of the 1s state cannot be directly observed, it can be indirectly measured from
the 2s→ 1s transition energy, by comparing the experimental transition energy against the Dirac equation
based calculation and subtracting 2s Lamb shift. Table 2 compares the experimental 1s Lamb shift
energies against equation 6.2.20 based calculation. The di�erence between calculation and experiment
again has 2% error.

Nucleus Calculated Experimental
type 1s Lamb shift 1s Lamb shift

Muonium 8298 MHz 8095 MHz
Hydrogen 8354 MHz 8173 MHz
Deuterium 8358 MHz 8184 MHz

Table 2. The calculated and experimental 1s Lamb shift values for muonium, hydrogen,
and deuterium. The experimental measurement is based on the 2s → 1s transition
measurement, and the calculation is based on equation 6.2.20.

Recent measurements [10] also reveal the Lamb shift values of an electron around a Z = 2 nucleus.
Regarding this Z > 1 case, equation 6.2.20 implies approximately Z4 dependence: there is a Z dependence
of the �rst term, a Z3 dependence of the ψ2 (0) term. In the Z = 2 case, the 2s → 2p Lamb shift
estimation with this simple Z4 dependence yields 16.7 GHz, which compares reasonably well with the
measured value of 14.04 GHz. The 14.04 GHz experimental value of 2s→ 2p Lamb shift at Z = 2 implies
Z3.7 dependence of the Lamb shift. The 2s → 2p Lamb shift measurement on heavier nuclei, such as
oxygen [11], indicates that this Z3.7 dependence remains fairly constant.

In summary, we showed that the Lamb shift can be accounted for as an electron-noise interaction.
Our calculation yields the approximately correct Lamb shift dependence on the nuclear mass, nuclear
charge, and orbital quantum number. The experimental Lamb shift data implies kmax

kmin
≈ 2π ratio of

limiting noise wavenumbers between which the bound electron responds to vacuum noise. This relatively
narrow range suggests some type of resonant noise interaction around the electron's wavenumber value,
as illustrated in �gure 6.2.2. Our result raises the follow-up question of explaining the kmax

kmin
≈ 2π ratio.

The obtained δr parameter is an order of magnitude smaller than the electron zitterbewegung radius.
For the �rst time, we clari�ed why the electron Zitterbewegung structure does not blur the quantum
mechanical wavefunction with respect to the nuclear position.
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Figure 6.2.2. The electron-noise interaction strength for an electron with p = ℏk mo-
mentum. The interaction strength is represented by the shaded area; it is de�ned by the
elementary charge value and by the interacting noise wavenumber range.

6.3. Is QED theory relevant for the Lamb shift calculation?

Historically, two di�erent Lamb shift calculations emerged in the 1940s. Bethe modeled the vacuum
noise as random electron-positron charge �uctuations appearing and disappearing [4], while Welton mod-
eled vacuum noise as an electromagnetic noise �eld. In Bethe's model, the appearing �virtual positrons�
behave just like real positrons, except for their magical ability of disappearing without any trace, i.e.
they should annihilate without producing any 511 keV gamma radiation, which actual positrons always
produce upon annihilation. To date, there is no experimental evidence for �virtual positrons�, the concept
of negative energy remains paradoxical, and we explained why Bethe's kmin and kmax choices cannot be
correct. Bethe's model is also unrealistic in its treating electrons and positrons as point particles, in order
to obtain an e�ect ranging up to tens of femtometers, without giving any consideration to the much larger
Zitterbewegung structure of electrons and positrons. There is no reason to give further considerations to
Bethe's model.

In contrast, our Lamb shift calculation is based on a realistic electron Zitterbewegung model, and
accounts the e�ect of Lorentz invariant electromagnetic vacuum noise. This electromagnetic vacuum
noise has been experimentally measured, as presented for example in [5], and also in Casimir�Polder
force measurements. Occam's razor principle favors not to add any complicated assumptions about the
physical vacuum.
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CHAPTER 7

Are space-time curvature e�ects relevant to electron modeling?

Andras Kovacs[1]

[1] Exafuse. E-mail: andras.kovacs@broadbit.com

7.1. Introduction

What is the role of space-time metrics in the description of fundamental forces and interactions? In
preceding chapters, we showed how the linear ∂2A

□
= 0 Maxwell equation accounts for particle mass

as electromagnetic �eld energy and accounts for particle spin as the magnetic moment of the circulating
electromagnetic wave. However, this linear ∂2A

□
= 0 equation cannot account for the elementary

charge quantization; a di�erent elementary charge value would be just a scaling factor adjustment for
the particle mass and spin calculation. In Natural units, the elementary charge value is e =

√
α, where

α is the electromagnetic �ne structure constant. The constant value of e and α indicates that they
are determined by a nonlinear equation, whose solutions are only stable at a speci�c value of e and α.
Identifying the nonlinear dynamics, which is responsible for charge and mass quantization, requires a
proper understanding of spacetime metrics in the context of charged elementary particles. The main goal
of this chapter is to establish the methodology of spacetime metrics calculation in the microscopic limit.
Speci�cally, we present the involved concepts in as clear terms as possible, and point interested readers
to references where further details can be found.

As mentioned in the book's introduction, the motion of planets was �rst described and predicted by
epicycloid formulas. Newton discovered that planetary motion is caused by gravitational forces, given
by the Fgravity = GmM

r2 formula. While Newton's formula has the same the accuracy as epicycloids
for predicting planetary motion, it represents a deeper understanding of elementary interactions and
gives a uni�ed method to calculate the motion of planets, falling apples, and rockets. A next level of
understanding gravitational forces was given by Einstein's general relativity theory. As illustrated in �gure
7.1.1, general relativity allows us to identify mass with spacetime curvature or more precisely to identify
the stress-energy-momentum tensor with the Ricci curvature tensor. In this theory, a planet moves
along a straight line (geodesic) in its locally �at spacetime, which corresponds to a trajectory of a closed
ellipsoid loop in the globally curved spacetime. Moreover, although one may calculate approximately
the same planetary trajectory via Newton's gravitational force over a �at spacetime or via Einstein's
spacetime gravitational �eld equations, nevertheless they are di�erent from both an ontological and
physics perspective. The new insights gained through the concepts and equations of general relativity
involve a paradigm shift. For example, as illustrated in �gure 7.1.1, general relativity gives a uni�ed
method to calculate the motion of planets and the gravitational de�ection of electromagnetic waves.
Thus we gained new knowledge with respect to Newton's theory, which failed to say anything about light
de�ection.

The Reissner-Nordström metric of general relativity describes how electromagnetic �eld energy curves
spacetime. This suggests the following thought experiment: consider two electrically charged cannon balls

Figure 7.1.1. An illustration of gravitational spacetime curvature (top) and electro-
magnetic spacetime curvature (bottom).
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orbiting around their center of mass, such that the gravitational forces are negligible in comparison with
electric forces. Applying Maxwell's equations over a �at spacetime, we may calculate the trajectory of
these balls spiraling into each other, as well as the radiated electromagnetic wave during this process.
Alternatively, we can calculate the space-time curvature, which is not constant in this case, but rather a
rotating spiral as shown in �gure 7.1.1. Upon lengthy calculations, we would arrive at the same geodesic
trajectory result as obtained by applying Maxwell's equations over a �at spacetime metric. So far there
is nothing controversial, and the involved relativistic equations are well known. We might now ask:
what happens when the balls are scaled down to a microscopic level so that the mass to charge ratio is
very small? As the ball radius shrinks, electromagnetic �elds get more intense, which generates more
curved spacetime. Intuitively, the role of spacetime curvature should be immense in quantum mechanics.
However, quantum mechanics yields precise binding energy values without any accounting of spacetime
curvature e�ects. It means that, if spacetime curvature is relevant in the microscopic context, it is already
incorporated into the Dirac equation. We address this topic as well in the last section.

7.2. Electromagnetic �elds' geometric interpretation via the Riemann metric tensor

Ever since the discovery of general relativity, it remained an open challenge to determine whether its
scope can be extended to also include electromagnetic forces and interactions. Such an extension has been
Einstein's dream of unifying gravity with electromagnetism. A novel insight of Jussi Lindgren is that the
spacetime metric tensor, which de�nes spacetime distances and curvature, also encodes electromagnetic
�elds and charges starting from the following simple relationship:

(7.2.1) gµν = ηµν + CAµ ⊗Aν

where gµν is the spacetime metric tensor, ηµν is the Minkowski metric, and A is the electromagnetic
four-potential, and C is a constant. The dimension of this C constant is the inverse of Aµ ⊗Aν , so that
CAµ ⊗ Aν becomes dimensionless. The evolution of this metric can be calculated via the methodology
of general relativity, and it leads to a nonlinear form of Maxwell's equation. However, according to
Jussi Lindgren's calculations, in the limit where the metric approaches the Minkowskian ηµν metric,

Maxwell's equation takes the same ∂2A
□
= 0 form that was introduced in chapter 1. Jussi Lindgren also

demonstrated to the author that the charge-carrying longitudinal wave of chapter 2 is a longitudinal wave
of spatial compression in this context. This methodology is an other perspective that leads to the same
results as our present work. The quantized electron mass and charge values imply that, at close proximity
to an electron, spacetime curvature su�ciently di�ers from the Minkowskian ηµν metric: electrodynamics
is then governed by a non-linear equation in some microscopic regions. We leave it to interested readers
to calculate for themselves the timewise evolution of equation 7.2.1.

In hindsight, it is clear that the mistaken imposition of electromagnetic gauges prevented an earlier
uni�cation of gravitational and electromagnetic theories.

In the linear regime of Maxwell's equation, electromagnetic waves pass through each other without
scattering. In this linear regime, the electron wave does not scatter a photon wave. It follows from
equation 7.2.1 that the limit between linear and non-linear regimes depends on the wave intensity.

At the vacuum noise intensity, we saw in chapter 6 that an electron interacts with photons only
when the electron and photon wavenumbers match within a kmax

kmin
= 2π range. For an electron wave, the

generalized Maxwell equation's non-linear terms thus di�er from zero only within this speci�c wavenumber
range, and the electron is essentially transparent to photon wavenumbers outside of this range. As noted
in chapter 6, the spectrum of non-linear regime extends further at higher photon intensities. The larger
the mismatch between electron and photon wavenumbers is, the larger must be the photon intensity
to achieve a certain scattering probability. Correspondingly, it is observed in practice that very high
frequency gamma radiation and very low frequency radio waves are the most transparent to electrons.

7.3. Electromagnetic �elds' geometric interpretation via Cli�ord rotors

In section 1.3.2, it was shown that the electromagnetic energy-momentum density vectorw is obtained
by a rotation of the spacetime base vector γt :

(7.3.1) w =
1

2µ0

(
GγtG̃

)
whereG is the electromagnetic �eld vector. Essentially, equation 7.3.1 quanti�es how the electromagnetic
�eld intensity twists the time coordinate with respect to the spatial axes. The electromagnetic energy-
momentum density thus gains a geometric interpretation, as a twisted space-time metric.
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Around an electrically charged particle, the electric �eld's energy density is proportional to e2 when
the electron mass is �xed. The same applies to magnetic �eld intensity as well. Therefore, e2 can be
interpreted as a parameter of spacetime twisting. Using Natural units, the elementary charge value is
e2 = α, where α is the electromagnetic �ne structure constant. In this way, α too can be interpreted as
a parameter of spacetime twisting. It has been a long-standing mystery to understand what principle
determines these electron parameters.

To explore the elementary charge value's origin, we must understand how the electron wave is stabi-
lized against vacuum noise related distortions. Any electron-stabilizing non-linear process is characterized
by e2, which is the above explained parameter of non-linear spacetime twisting. In chapter 6, we also
discovered that an electron scatters vacuum noise only within a kmax

kmin
= 2π wavenumber range, and

it is transparent to noise wavenumbers outside of this range. When normalized to the electron mass,
the electron-noise interaction's non-linear term becomes proportional to 2πe2. When the deviation from
linearity is small, the non-linear term is a second order term. Therefore, this second order term of

electron-noise interaction is proportional to 2πe2 =
(√

2πe
)2
.

It is interesting to observe the following phenomenological relationship, which holds at 99.98% accu-
racy in Natural units:

(7.3.2)
√
2πe = δ−1

F

where δF is the Feigenbaum constant. The δF ≈ 4.6692016 Feigenbaum constant is a fundamental
mathematical constant of iterative processes, analogous to π in geometry or to e in calculus. It is a
universal constant for any single-parameter quadratic map. In the context of dynamic systems, the
Feigenbaum constant is associated with superstable periodic orbits and therefore its relevance to electron
Zitterbewegung stabilization is anticipated. If equation 7.3.2 is not a coincidence, we are one step closer
to understanding the origin of elementary charge value.

7.4. The Dirac equation's geometric interpretation

As mentioned in the introduction section, the Dirac equation's accurate results imply that it already
accommodates the e�ects of spacetime metrics. Writing down the Dirac equation in terms of spacetime
metrics has been accomplished by Paul O'Hara: this work can be found in chapter 5 of reference [1],
and we summarize its result in table 1. In chapter 5, we clari�ed the Dirac equation's meaning in simple
terms. In particular, equation 5.2.8 shows how to write the Dirac equation in a dual form: this yields two
mathematically equivalent equations that have complementing dimensionality. Based on this approach,
the key insight of Paul O'Hara is to use Cartan's spinor eigenvalue method to associate the quadratic
polynomial of the metric

ds2 = gµνdx
µdxν(7.4.1)

with a spinor eigenvalue equation:

dsξ = γadx
aξ(7.4.2)

where γa are the Cli�ord basis vectors of space-time, ξ is a spinor, and gµν is the spacetime metric
tensor given by equation 7.2.1. Equation 7.4.2, in a natural way, maps spinors directly to the metrics of
general relativity. As a next step, one may derive how the spinor ξ of equation 7.4.2 relates to the dual
of space-time vectors.

On the one hand, each vector ∂
∂xa can be mapped to a dual one-form dxa. This produces to the

second column of table 1. On the other hand, the Dirac equation is recognized as the linearized form
of the Klein-Gordon equation, where the wavefunction is de�ned to yield the energy eigenvalue upon
time di�erentiation and to yield the momentum eigenvalue upon spatial coordinate di�erentiation. In
the dual eigenvalue equation, the dual basis vectors γa are obtained via the γa = Iγa assignment, where
I ≡ γtxyz is the Cli�ord pseudo-scalar. It can be clearly seen from table 1 that the mc2 term of the Dirac

equation corresponds to the ∂ψ
∂s = mc

ℏ ψ eigenvalue assignment, the ℏ term is a scaling factor de�ned by
the electromagnetic vacuum noise, and the i term corresponds to the Cli�ord pseudo-scalar. The Dirac
equation can be therefore interpreted as a purely geometric equation, where the mc2 term directly relates
to space-time metric.

In table 1, the mass term's dimensionality also matches the dimensional analysis of chapter 5. Con-
sidering that ds yields the length of a vector, the m term of its dual expression must represent a volume
quantity. This is in line with the equation 5.2.8, that shows the duality between the Dirac equation's
vector and tri-vector mass term formulations. We showed in chapter 3 that the electron mass is calculated
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Space-time Dual of Dirac spinor Eigenvalue of the
metrics the metric de�nitions dual metric

Length ds ∂ψ
∂s mc2

Time di�erence dt ∂ψ
∂t ϵ=∂ψ

∂t ϵ

Spatial distance dx ∂ψ
∂x pc=∂ψ

∂x pc

Eigenvalue eq. dsξ = γadx
aξ ∂ψ

∂s = γa ∂ψ∂xa γa = Iγa
(
mc2

)
ψ = iℏγa ∂ψ∂xa

Table 1. The relationship between space-time metrics and Dirac's eigenvalue assignments

by electromagnetic �eld energy integration over a volume of space; the electron mass must indeed have
volume dimension.

In summary, the three approaches outlined in this chapter are three perspectives of the same under-
lying physics. It is fascinating that both the Maxwell and Dirac equations can be compactly expressed
as geometric relations of the spacetime metric. We are perhaps a step closer to understanding the origin
of the elementary charge value, whose existence implies non-linear dynamics.
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CHAPTER 8

Do magnetic monopoles exist? Are they excited electron states?

Andras Kovacs[1]

[1] Exafuse. E-mail: andras.kovacs@broadbit.com

8.1. Introduction

This chapter reviews experiments relating to magnetically charged particles. Surprisingly, several
experiments indicate that certain particles might be magnetically charged. If magnetic monopoles exist,
then the relevant theoretic background for their understanding is in section 1.3.4, where we derived the
equations describing magnetic charges and magnetic charge currents.

On the one hand, the title of this chapter contains a question mark because a con�rmation of magnetic
monopoles' existence requires the elimination of any alternative interpretations to the measurements
described in this chapter. On the other hand, the collected set of experiments is compelling.

Prior monopole-related theories considered magnetic monopoles as particles comprising only mag-
netic charge [1]. However, the following experiments show that magnetically charged particles are also
electrically charged. Therefore, magnetic monopoles may not be stand-alone particles, but meta-stable
excited electron states, which decay back into an ordinary electron.

8.2. Observation of helicoidal particle tracks

Several experimenters reported a direct observation of helicoidal spiraling tracks: examples are shown
in �gure 8.2.1. The left side of �gure 8.2.1 shows a track recorded in a CR-39 detector, which is emitted
from a vacuum electrode illuminated by a laser pulse. Its helicoidal radius is 50 microns.

The right side of �gure 8.2.1 shows the optical camera recording of a macroscopic particle traveling
a low pressure gas, which is emitted from a glowing electrode. This electrically charged particle is
moving along the electric �eld lines between the two electrodes, which have high voltage between them.
Surprisingly, it is moving not in a straight line, but along a helicoidal spiraling track: its helicoidal radius
is a few millimeters. The simplest explanation for such a helicoidal track is that a magnetic charge
is present on the particle; the magnetic equivalent of the Lorentz force then causes it to spiral along
an electric �eld line. This observation inspires to look for direct experimental evidences of magnetic
monopoles.

Figure 8.2.1. Left: a helicoidal track in a CR-39 detector, reproduced from [7]. Right:
a helicoidal track emitted from an electrode into low-pressure gas, presented in [9].
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Figure 8.3.1. E�ective magnetic �eld (Heff ) on the 57Fe nucleus, obtained via Möss-
bauer spectrum measurements. Samples 5,6,7 were exposed to magnetic monopoles gen-
erated by electric discharge, prior to the �rst measurement. Sample 1 is the unexposed
control sample. The N, S, L symbols indicate the North, South, and Lengthwise parallel
orientation of a magnet placed behind the iron foil during discharge, with respect to the
electric discharge location. Reproduced from [2].

8.3. Direct observations of magnetically charged particles

In the following paragraphs we review experiments that could be interpreted as magnetic monopoles'
direct observations.

The authors of reference [2] placed 57Fe foils near the reactor with underwater exploding titanium
wire, and placed a magnet behind the 57Fe foils. As shown in �gure 8.3.1, the orientation of the magnet
has a measurable e�ect on the Mössbauer spectrum of 57Fe nuclei, but only in those cases when the foil
is placed near the reactor. The authors of [2] interpret this e�ect in the following way: the 57Fe foil
captures emitted magnetic monopoles, and opposite magnetic charges shift the e�ective magnetic �eld
(Heff ) on the 57Fe nucleus into opposite directions.

The author of [7] observed that the emitted particle tracks form two beams when a magnetic �eld is
applied in his experiment, and they �y towards the two poles of the applied magnet. A photo of these
beam-forming tracks is shown in �gure 8.3.2. Such tracks are therefore interpreted as magnetic monopole
tracks, which separate into two beams according to their magnetic charge.

Vladimir Chizhov placed a container of hydrated nickel powder, that underwent prior heat treatment,
into a cloud chamber. There was a magnetic �eld in the cloud chamber; the red arrows on �gure 8.3.3
indicate the magnetic �eld lines. Figure 8.3.3 contains two frames from a video recording, which shows
a particle track emerging from the hydrated nickel powder. The curvature of this track is di�erent than
the track of an electrically charged particle, which would spiral around the magnetic �eld lines. Instead,
the emitted particle track may be interpreted as a parabolic curve. The emitted particle initially moves
upwards, then the parabola has a peak at a certain height, and subsequently the particle track continues
downwards. Such track dynamics is consistent with the movement of a magnetically charged particle.
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Figure 8.3.2. Particle tracks emitted from a laser-pulse illuminated electrode. Two
beams are formed, which are �ying towards the two poles of a magnet. Reproduced from
[7].

An other observation of cloud chamber track emission from post-experiment hydrated nickel was also
reported in [8].

Figure 8.3.3. Two frames from a video recording which shows a particle track emerging
from a container of hydrated nickel powder, that underwent prior heat treatment. This
container is in a cloud chamber, and the red arrows indicate the direction of the applied
magnetic �eld. Data provided by V. Chizhov.

At the JINR institute in Dubna, a group led by Vladimir A. Nikitin analyzed pair creation tracks in
a bubble chamber, where particle-antiparticle pairs were generated from energetic photons [3]. Upon the
analysis of 7000 such tracks, the authors of [3] found 47 anomalous lepton tracks. The analysis of these
tracks revealed that they are produced by 5-10 MeV mass particles, that eventually decay into an electron
or positron. In two cases, the decay event was captured on the track photo. Figure 8.3.4 shows such a
particle pair creation event and the subsequent decay of the negatively charged lepton particle. As can
be seen in �gure 8.3.4, the decay process is actually a two-step decay, and an electron is produced upon
the second decay step. The �nal electron track is a small circle at end of the lepton track. The bubble
chamber is under 1.5 T magnetic �eld, with magnetic �eld lines being perpendicular to the photographic
plane, and electrically charged energetic particles' helicoidal tracks appear as circles from this perspective.

As can be observed in �gure 8.3.4, the track of the negatively charged lepton follows an elliptic track.
The analysis of reference [3] assumes that any deviation from a circular track is caused by the gradual
deceleration of an energetic particle; but in this case the curvature radius must be constantly decreasing.
However, a deceleration e�ect is in contradiction with the elliptic track shown in �gure 8.3.4. Such a track
can be only caused by the particle moving up and down along magnetic �eld lines, demonstrating that
a magnetic charge accelerates the particle in perpendicular direction to the photographic plane. Figure
8.3.4 is therefore a direct evidence of an elementary particle that comprises both electric and magnetic
charges.

References [4, 5, 6] describe a series of experiments, where magnetic monopole observations were
claimed upon illuminating ferromagnetic nano-particles by intense visible light. In these experiments,
the tracks of illuminated and falling nano-particles are well visible. The method of magnetic charge
measurement is outlined in �gure 8.3.5: it is a direct measurement method, and analogous to Millikan's
method for measuring the elementary electric charge. Thousands of particle tracks were analyzed in these
series of experiments.

These experiments discovered that magnetic monopoles are produced most e�ectively by circularly
polarized light. The sign of the produced magnetic monopole charge depends on the chirality of the
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Figure 8.3.4. Heavy lepton pair creation in a bubble chamber. A lepton-antilepton
pair is created at the bottom right corner. The other two purple arrows indicate the two
decay events. The yellow dashed ellipse shows the elliptic track �tting of the negatively
charged lepton. Photograph provided by V. A. Nikitin.

Figure 8.3.5. Magnetic charge measurement methodology: a time-varying magnetic
�eld (left) causes a zig-zag pattern of a falling nano-particle's track (right), when it
is magnetically charged. The magnetic charge is calculated from the analysis of track
photographs. Reproduced from [6].

Figure 8.3.6. A measurement of the magnetic charge quantum. The vertical scale
shows the number of samples in the histogram. The horizontal scale shows the magnetic
charge value, where the unit 1 corresponds to the magnetic charge quantum value of
g = 5.84× 10−13 gauss cm2. Reproduced from [4].

applied circularly polarized light; opposite light chiralities produce opposite magnetic charges in the
ferromagnetic nano-particles.

The authors of [4, 5, 6] succeeded in measuring the magnetic charge quantum, and found its value
to be g = 5.84× 10−13 gauss cm2. Figure 8.3.6 shows the measured magnetic charge quantization. This

magnetic charge quantum value is g = α2

2.92gD = α2

5.84gS , where gD is the Dirac monopole charge and
gS is the Schwinger monopole charge. This data is unexpected by current mainstream theories, which
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anticipate the magnetic monopole charge quantum to be gD or gS , which stem from the gD
e = c

2α and
gS
e = c

α assumptions.
We now compare the above measurement results against the electric charge quantum. Table 1 shows

the experimentally measured elementary electric and magnetic charge values, expressed in natural units.
We notice their charge ratio to be approximately 2α

3
2 .

elementary electric charge elementary magnetic charge

Charge
[
e =

√
α ≈ 8.543 · 10−2

]
NU

[
g = αe

5.84 ≈ 2α2 ≈ 1.065 · 10−4
]
NU

magnetic/electric charge ratio

Charge ratio 2α
3
2

Field energy density1 4α3

Table 1. A comparison between the electron charge and its excited state magnetic
charge, expressed in Natural Units.

The surprisingly small magnetic charge quantum of table 1 suggests that, under suitable conditions,
it only takes a relatively small energy to add a meta-stable magnetic charge to an electron. This explains
why the authors of references [4, 5, 6] could use intense light to produce magnetic monopole excitations,
where the involved excitation energy is on the order of 1 eV.

Di�erent experiments give varying half-life estimates to magnetic monopoles. References [4, 5, 6]
report less than 1 sec half-life, while �gure 8.3.1 indicates several hours half-life. Apparently, the half-life
value depends on the environment in which the monopole charge is embedded.

We leave it for the reader to decide whether the herein reviewed magnetic monopole claims altogether
prove the existence of magnetically charged electron states, or whether there is an alternative explanation
to these experimental data.
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